题目1:醉汉坐座位
飞机乘客有对应的1号到100号的座位,这些乘客会按号码顺序登机并应当对号入座,如果他们发现对应号座位被别人坐了,就会在剩下空的座位随便挑一个坐。
现在假设1号乘客疯了(其他人没疯),他会在100个座位中随便选一个座位坐下,问:第100人正确坐到自己坐位的概率是多少?(也可推广到n名乘客n个座位的情况)
这里我们可以用递归的思想去计算。
首先假设第一位乘客成功坐到了一号位,那么剩下的乘客都会坐在自己的位置上,于是乎100号乘客坐到自己位置的概率即为 1100\frac {1}{100}1001
假设第二位乘客坐在了二号位,此时还剩下一号位和三号以上的位置,此时我们可以将一号位作为二号位,如果二号成功坐到了一号位,那么100号乘客坐到自己位置的概率即为 199\frac {1}{99}991,这个过程是不是很相似。我们可以将二号乘客作为醉汉,那么可以看做有99个乘客,第一位乘客疯了的问题。
假设一共有N位乘客和N位座位,可以得到:
PN=1N+1N(PN−1+PN−2+......+P2)P_{N}= \frac{1}{N}+ \frac{1}{N}(P_{N-1}+P_{N-2}+......+P_{2})PN