
4D毫米波雷达
文章平均质量分 96
分享4D毫米波雷达的数据集、算法、代码、具体应用示例。
一颗小树x
计算机专业,某车企的高级算法工程师;曾获华为云-云享专家,华为云-云创 首席贡献官,阿里云-专家博主等荣誉。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
4D毫米波雷达——ADCNet 原始雷达数据 目标检测与可行驶区域分割
本文介绍使用4D毫米波雷达,基于原始雷达数据,实现目标检测与可行驶区域分割,它是来自2023-12的论文。ADCNet只使用雷达信息,实现车辆检测和可行驶区域分割。输入:原始雷达数据;即ADC数据,由4D毫米波雷达生成。信号处理模块:用一个可学习的信号处理层,来处理原始ADC数据。RD特征:信号处理层将ADC数据,转为RD特征,范围-多普勒信息,包含距离和速度信息。主干网络:进一步编码RD特征,隐式地估算目标的方位角。任务头:首先进行RAD张量预训练。在预训练完后,进行微调检测任务头和分割任务头原创 2024-01-30 00:24:41 · 3581 阅读 · 0 评论 -
4D毫米波雷达——FFT-RadNet 目标检测与可行驶区域分割 CVPR2022
本文介绍使用4D毫米波雷达,实现目标检测与可行驶区域分割,它是来自CVPR2022的。会讲解论文整体思路、输入数据分析、模型框架、设计理念、损失函数等,还有结合代码进行分析。输入是“范围-多普勒”信息,即RD图;由4D毫米波雷达生成。经过主干网络和FPN提取特征信息,并进一步编码形成“范围-角度”信息”。然后接两个任务头:车辆检测任务、可行驶区域分割任务。原创 2024-01-21 17:59:54 · 4912 阅读 · 0 评论 -
4D毫米波雷达——RADIal数据集、格式、可视化 CVPR2022
本文介绍RADIal数据集,来着CVPR2022的。它是一个收集了 2 小时车辆行驶数据的数据集,采集场景包括:城市街道、高速公路和乡村道路。采集设备包括:摄像头、激光雷达和高清雷达等,并且还包括了车辆的 GPS 位置和行驶信息。总共有 91 个视频序列,每个视频时长从 1 分钟到 4 分钟不等,加起来一共是 2 小时。这些视频详细记录了车辆在不同地点和环境下的行驶情况。在大约 25,000 个录制的画面中,有 8,252 个画面被用来标记了 9,550 辆车。原创 2024-01-19 01:21:49 · 6862 阅读 · 12 评论 -
4D毫米波雷达——原理、对比、优势、行业现状
4D 毫米波雷达是传统毫米波雷达的升级版,4D指的是速度、距离、水平角度、垂直高度四个维度。相比传统 3D 毫米波雷达,4D 毫米波雷达增加了“高度”的探测,将第四个维度整合到传统毫米波雷达中。4D毫米波雷达被视为未来车载雷达的一种可能的标准配置,因为它在多方面优于传统的毫米波雷达和低线激光雷达,能与高线激光雷达互补。预计这种雷达将被广泛应用于各种车型中。与传统雷达产品相比,4D毫米波雷达能够突破在静止目标识别横向移动检测高度识别区分邻近物体和探测隐藏车辆等方面的限制。原创 2024-01-18 00:02:47 · 19883 阅读 · 0 评论