第六章

本文详细介绍了如何从零开始实现逻辑回归算法,包括梯度下降法的使用,以及如何通过调整学习率和迭代次数来优化模型。同时,文章还展示了如何使用sklearn库加载鸢尾花数据集,并进行数据预处理,最后通过绘制决策边界和计算准确率来评估模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
class LogisticReressionClsaaifier:
    def __init__(self,max_iter=200,learning_rate=0.01):
        self.max_iter=max_iter
        self.learning_rate=learning_rate
    def sigmoid(self,x):
        #将x转化为0~1之间的数
        return 1/(1+math.exp(-x))
    def data_matrix(self,X):
        data_mat=[]
        for d in X:
            data_mat.append([1.0,*d])
            #d: [5.5 4.2]
            #[1.0,*d]:[1.0, 5.5, 4.2]
        return data_mat

    def fit(self, X, y):
        data_mat = self.data_matrix(X)  # m*n
        self.weights = np.zeros((len(data_mat[0]), 1), dtype=np.float32)

        for iter_ in range(self.max_iter):
            #  #利用梯度下降法一次次迭代求正确的权重
            for i in range(len(X)):
                result = self.sigmoid(np.dot(data_mat[i], self.weights))
                error = y[i] - result  # 迭代
                self.weights += self.learning_rate * error * np.transpose([data_mat[i]])
                 #np.transpose:调换数组的行列值的索引值,类似于矩阵的转置
        print('LogisticRegression Model(learning_rate={},max_iter={})'.format(self.learning_rate, self.max_iter))

    def score(self,X_test,y_test):
        right=0
        X_test=self.data_matrix(X_test)
        for x,y in zip(X_test,y_test):
            resault=np.dot(X_test,self.weights)
            if (resault>0 and y==1) or (resault<0 and y==0):
                right+=1
        return right/len(X_test)

def create_data():
    # 导入数据
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]

    # 调用了两个特征一个标记
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# 得到测试数据和训练数据

lr_clf = LogisticReressionClsaaifier()
lr_clf.fit(X_train, y_train)
# 调用逻辑斯蒂函数
x_ponits = np.arange(4, 8)
y_ = -(lr_clf.weights[1] * x_ponits + lr_clf.weights[0]) / lr_clf.weights[2]
plt.plot(x_ponits, y_)

# lr_clf.show_graph()
plt.scatter(X[:50, 0], X[:50, 1], label='0')
plt.scatter(X[50:, 0], X[50:, 1], label='1')
plt.legend()


基于开源大模型的教学实训智能体软件,帮助教师生成课前备课设计、课后检测问答,提升效率与效果,提供学生全时在线练习与指导,实现教学相长。 智能教学辅助系统 这是一个智能教学辅助系统的前端项目,基于 Vue3+TypeScript 开发,使用 Ant Design Vue 作为 UI 组件库。 功能模块 用户模块 登录/注册功能,支持学生和教师角色 毛玻璃效果的登录界面 教师模块 备课与设计:根据课程大纲自动设计教学内容 考核内容生成:自动生成多样化考核题目及参考答案 学情数据分析:自动化检测学生答案,提供数据分析 学生模块 在线学习助手:结合教学内容解答问题 实时练习评测助手:生成随练题目并纠错 管理模块 用户管理:管理员/教师/学生等用户基本管理 课件资源管理:按学科列表管理教师备课资源 大屏概览:使用统计、效率指数、学习效果等 技术栈 Vue3 TypeScript Pinia 状态管理 Ant Design Vue 组件库 Axios 请求库 ByteMD 编辑器 ECharts 图表库 Monaco 编辑器 双主题支持(专业科技风/暗黑风) 开发指南 # 安装依赖 npm install # 启动开发服务器 npm run dev # 构建生产版本 npm run build 简介 本项目旨在开发一个基于开源大模型的教学实训智能体软件,帮助教师生成课前备课设计、课后检测问答,提升效率与效果,提供学生全时在线练习与指导,实现教学相长。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值