
机器学习
文章平均质量分 71
在本专栏中主要使用python进行人工智能技术的学习操作
欲游山河十万里
本博客作为个人的学习笔记记录。博客的内容由其他博客备份而来,本博客作为备份地址。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Win10系统安装TensorRT
Tips:理论指引实践TensorRT是一个高性能的深度学习推理(Inference)优化器,支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。TensorRT(1)-介绍-使用-安装祝一次安装成功。转载 2023-07-07 14:48:45 · 3014 阅读 · 4 评论 -
机器学习基础介绍
为了完成这一篇博文,我参考了如上很多个大佬的博文,我真心地觉得诸位大佬地水平高超,博文条例清晰,诸位可以直接通过链接阅读我所推荐地几位大佬地博文。原创 2022-10-31 19:37:39 · 489 阅读 · 0 评论 -
机器学习——感知机
在本部分,我参考了网上多位博文对感知机的不同理解,大家可以根据自己的喜好进行对应的理解。输入为实例的特征向量,输出为实例的类别,取+1和-1;感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型;导入基于误分类的损失函数;利用梯度下降法对损失函数进行极小化;感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式;1957年由Rosenblatt提出,是神经网络与支持向量机的基础。感知机接收多个输入信号,输出一个信号。感知机的信号只有“流/不流”(1/0)两种取值。原创 2022-10-31 16:22:33 · 9847 阅读 · 1 评论 -
机器学习-目录
最后由于本人只是一个水平极低的底层程序员和一名刚刚上岸的研究新生,所以本博文很有可能因为本人水平有限导致博客水平质量低,本博客只能作为一个学习参考的博文,更多的实践和理解需要大家通过动手,然后自己去慢慢的体会。从2022-10-30开始,我将会开始学习机器学习的相关内容,对于机器学习中的内容,我将会写出更多篇的博客文章。而这篇博文将会作为机器学习的学习目录。读者可以通过这个博文一目了然的了解我的机器学习的过程。对于本次学习过程中所借鉴的一切网上的其他大佬的博文都会在每个章节的参考文献中进行标注。原创 2022-10-30 21:46:05 · 336 阅读 · 0 评论