分布式系统一致性所涉及的问题及算法

本文详细解析了拜占庭将军问题,探讨其在分布式决策中的挑战,然后深入剖析了Paxos算法的工作原理及其在解决一致性问题上的关键步骤。此外,文中还比较了Paxos与ZAB协议,以及它们在Zookeeper中的应用,最后讨论了CAP理论和分布式系统中的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拜占庭将军问题

拜占庭将军问题是一个协议问题,拜占庭帝国军队的将军们必须全体一致的决定是否攻击某一支敌军。问题是这些将军在地理上是分隔开的,并且将军中存在叛徒。叛徒可以任意行动以达到以下目标:欺骗某些将军采取行动;促成一个不是所有将军都同意的决定,如当将军们不希望进攻时促成进攻行动;或者迷惑某些将军,使他们无法做出决定。如果叛徒达到了这些目的之一,则任何攻击行动的结果都是注定要失败的,只有完全达成一致的努力才能获得胜利。

Paxos算法

Paxos算法是一种基于消息传递且具有高度容错特性的一致性算法。

Paxos算法解决的问题:就是如何快速正确的在一个分布式系统中对某个数据值达成一致,并且保证不论发生任何异常,都不会破坏整个系统的一致性。

Paxos算法描述:

  • 在一个Paxos系统中,首先将所有节点划分为Proposer(提议者),Acceptor(接受者),和Learner(学习者)。(注意每个节点都可以身兼数职)。
  • 一个完整的Paxos算法流程分为三个阶段:
    • Prepare准备阶段:(1)Proposer向多个Acceptor发出Propose请求Promise(承诺)。(2)Acceptor针对收到的Propose请求进行Promise。
    • Accept接受阶段:(1)Proposer收到多数Acceptor承诺的Promise后,向Acceptor发出Propose请求。(2)Acceptor针对收到的Propose请求进行Accept处理。
    • Learn学习阶段:(1)Proposer将形成的决议发送给所有Learners。

(1)Prepare:Proposer生产全局唯一且递增的Proposal ID,向所有Acceptor发送Propose请求,这里无需携带提案内容,只携带Proposal ID即可。
(2)Promise:Acceptor收到Propose请求后,做出“两个承诺,一个应答”。

  • 不再接受Proposal ID小于等于当前请求的Propose请求。
  • 不再接受Proposal ID小于当前请求的Accept请求。
  • 不违背以前做出的承诺下,回复已经Accept过的提案中Proposal ID最大的那个提案的value和Proposal ID,没有则返回空值。

(3)Propose:Proposer收到多数Acceptor的Promise应答后,从应答中选择Proposal ID最大的提案的Value,作为本次要发起的提案。如果所有应答的提案Value均为空值,则可以自己随意决定提案Value。然后携带当前Proposal,向所有Acceptor发送Propose请求.
(4)Accept:Acceptor收到Propose请求后,在不违背自己之前做出的承诺下,接受并持久化当前Proposal ID和提案Value。
(5)Learn:Proposer收到多数Acceptor的Accept后,决议形成,将形成的决议发送给所有Learner。

情况一:
在这里插入图片描述
情况二:
在这里插入图片描述
情况三:
在这里插入图片描述
Paxos算法缺陷:在网络复杂的情况下,一个应用Paxos算法的分布式系统可能很久无法收敛,甚至陷入活锁的情况。

造成这种情况的原因是系统中有一个以上的Proposer,多个Proposer相互争夺Acceptor,造成迟迟无法达成一致的情况.针对这种情况,一种改进的Paxos算法被提出:从系统中选出一个节点作为Leader,只有Leader能够发起提案.这样,一次Paxos流程中只有一个Proposer,不会出现活锁的情况,此时只会出现例子中第一种情况。

ZAB协议

ZAB算法

ZAB借鉴了Paxos算法,是特别为zookeeper设计的支持崩溃恢复的原子广播协议。基于该协议,zookeeper设计为只有一台客户端(leader)负责处理外部的写事务请求,然后leader客户端将数据同步到其他follower节点。即zookeeper只有一个leader可以发起提案。

ZAB协议内容

ZAB协议包括两种基本模式:消息广播、崩溃恢复。

消息广播

在这里插入图片描述

(1)客户端发起一个写操作请求。
(2)leader服务器将客户端的请求转化为事务Proposal提案,同时为每个Proposal分配一个全局的ID,即zxid。
(3)leader服务器为每个follower服务器分配一个单独的队列,然后将需要广播的Proposal依次放到队列中去,并且根据FIFO策略进行消息发送。
(4)follower接收到proposal后,会首先将其以事务日志的方式写入本地磁盘中,写入成功后向leader反馈一个ack响应消息。
(5)leader接收到超过半数以上follower的ack响应消息后,即认为消息发送成功,可以发送commit消息。
(6)leader向所有follower广播commit消息,同时自身也会完成事务提交。follower接收到commit消息后,会将上一条事务提交。
(7)zookeeper采用ZAB协议的核心,就是只要有一台服务器提交了Proposal,就要确保所有的服务器最终都能正确提交Proposal。

ZAB协议针对事务请求的处理过程类似于一个两阶段提交过程:
(1)广播事务阶段
(2)广播提交操作

这两阶段提交模型如下,有可能因为leader宕机带来数据不一致,比如:
(1)leader发起一个事务Proposal后就宕机,follower都没有Proposal。
(2)leader收到半数ack宕机,没来得及向follower发送commit。

崩溃恢复

一旦leader服务器出现崩溃或者由于网络原因导致leader服务器失去了过半follower的联系,那么就会进入崩溃恢复模式。

崩溃恢复——异常假设

在这里插入图片描述

(1)假设两种服务器异常情况:
1)假设一个事务在leader提出之后,leader挂了。
2)一个事务在leader上提交了,并且过半的follower都响应ack了,但是leader在commit消息发出之前挂了。
(2)ZAB协议崩溃恢复要求满足以下两个要求:
1)确保已经被leader提交的提案Proposal,必须最终被所有的follower服务器提交。(已经产生的提案,follower必须执行)
2)确保丢失已经被leader提出的,但是没有被提交的Proposal。(丢弃提案)

崩溃恢复——leader选举

崩溃恢复主要包括两部分:leader选举和数据恢复。
在这里插入图片描述

leader选举:根据上述要求,ZAB协议需要保证选举出来的leader需要满足以下条件:
(1)新选举出来的leader不能包含未提交的proposal。即新的leader必须都是已经提交了Proposal的follower服务器节点。
(2)新选举的leader节点中含有最大的zxid。这样做的好处是可以避免leader服务器检查Proposal的提交和丢弃工作。

崩溃恢复——数据恢复

在这里插入图片描述

ZAB如何数据同步:
(1)完成leader选举后,在正式开始工作之前(接收事务请求,然后提出新的Proposal),leader服务器会首先确认事务日志中的所有Proposal是否已经被集群中过半的服务器Commit。
(2)leader服务器需要确保所有的follower服务器能够接收到每一条事务的proposal,并且将所有已经提交的事务proposal应用到内存数据中,等到follower将所有尚未同步的事务Proposal都从leader服务器上同步过,并且应用到内存数据中以后,leader才会 把该follower加入到真正可用的follower列表中。

CAP理论

CAP理论告诉我们,一个分布式系统不可能同时满足以下三种:

  • 一致性(Consistency)
  • 可用性(Available)
  • 分区容错性(Partition Tolerance)

这三个基本需求,最多只能同时满足其中的两项,因为P是必须的,因此往往选择就在CP或者AP中。

(1)一致性(Consistency)
在分布式环境下,一致性是指数据在多个副本之间是否能够保持数据一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保持系统的数据仍然处于一致的状态。
(2)可用性(Available)
可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间返回结果。
(3)分区容错性(Partition Tolerance)
分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。

Zookeeper保证的是CP
(1)zookeeper不能保证每次服务请求的可用性。(在极端情况下,zookeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果)
(2)进行leader选举时集群都是不可用的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值