Pytorch 计算一个矩阵行向量之间的相似度

文章介绍了在PyTorch环境中,通过手动实现和使用内置函数`torch.cosine_similarity`来计算输入张量的行向量之间的相似度。首先,计算向量长度,然后进行矩阵乘法并除以向量长度的乘积,得到相似度矩阵。另一种方法是直接调用`torch.cosine_similarity`函数,它更简洁且计算速度快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch


def similarity(input_tensor):
    # step 1. 计算行向量的长度
    len_a = torch.sqrt(torch.sum(input_tensor ** 2, dim=-1))
    b = len_a.unsqueeze(1).expand(-1, input_tensor.shape[0])
    c = len_a.expand(input_tensor.shape[0], -1)
    # step2. 计算乘积
    x = input_tensor @ input_tensor.T
    # step3. 计算最后的结果
    res = x / (b * c)
    return res


def torch_similarity(input_tensor):
    sim_bg=torch.cosine_similarity(input_tensor.detach().unsqueeze(0), input_tensor.detach().unsqueeze(1),dim=-1)
    return sim_bg

if __name__ == '__main__':
    x=torch.randn(4,512)
    sim_bg=torch_similarity(x)
    print(sim_bg)
    res=similarity(x)
    print(res)
    print(res.size())

方法一:运算速度快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐亦亦乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值