活动选择

本文介绍了一个活动选择算法,用于从多个社团活动中挑选出不冲突的最大数量的活动序列。具体实现包括输入活动数量及每个活动的开始和结束时间,通过排序和比较活动结束时间来确定最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

活动选择

Time Limit: 1000 ms  Memory Limit: 65536 KiB
Problem Description
学校的大学生艺术中心周日将面向全校各个学院的学生社团开放,但活动中心同时只能供一个社团活动使用,并且每一个社团活动开始后都不能中断。现在各个社团都提交了他们使用该中心的活动计划(即活动的开始时刻和截止时刻)。请设计一个算法来找到一个最佳的分配序列,以能够在大学生艺术中心安排不冲突的尽可能多的社团活动。
比如有5个活动,开始与截止时刻分别为:



最佳安排序列为:1,4,5。
Input
第一行输入活动数目n(0<n<100);
以后输入n行,分别输入序号为1到n的活动使用中心的开始时刻a与截止时刻b(a,b为整数且0<=a,b<24,a,b输入以空格分隔)。
Output
输出最佳安排序列所包含的各个活动(按照活动被安排的次序,两个活动之间用逗号分隔)。
Sample Input
6
8 10
9 16
11 16
14 15
10 14
7 11
Sample Output
1,5,4
Hint
Source
#include<iostream>
#include<algorithm>
using namespace std;
struct dog
{
    int s,e;
    int num;
}a[101],t;
int main()
{
    int n,i,j,min;
    cin>>n;
    for(i = 0;i < n;i++)
    {
        cin>>a[i].s>>a[i].e;
        a[i].num = i + 1;
    }
    for(i = 0;i < n-1;i++)
    {
        for(j = i+1;j < n;j++)
        {
            if(a[i].e > a[j].e)
            {
                t = a[i];
                a[i] = a[j];
                a[j] = t;
            }
        }
    }
    cout<<a[0].num;
    min = a[0].e;
    for(i = 1;i < n;i++)
    {
        if(a[i].s >= min)
        {
            cout<<","<<a[i].num;
            min = a[i].e;
        }
    }
    cout<<endl;
    return 0;
}