
YOLOv8目标检测GUI系统(大作业、毕设版)
文章平均质量分 91
YOLOv8项目集合;包括大作业、毕设等等GUI界面;包含目标检测、语义分割;
yolo大师兄
专注于计算机视觉领域,特别是在图像分类、目标检测和图像复原等方面有深入的研究和实践经验。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于YOLOv11深度学习的交通信号灯检测识别系统【python源码+GUI界面+数据集+训练代码+训练结果+登录界面】
基于YOLOv11的交通信号灯检测系统主要用于日常生活中的红绿灯检测,显示目标在图像中的类别、位置、数目、置信度等;可对单张图片、文件夹、视频文件读取的图像,或从摄像头获取的实时画面中的交通灯进行识别,算法模型可选择替换;(这里,支持多种算法切换-从YOLOv8-YOLOv11都是可以用的,如果你手头有训练好的不是YOLOv11的模型,那也可以使用,直接选择就能使用;兼容性比较高);界面包含识别结果可视化,结果实时显示并能够进行目标逐个标注、显示和数据展示;画面显示窗口可缩放、拖动、自适应,结果可点击按钮保原创 2025-04-21 14:16:49 · 736 阅读 · 0 评论 -
基于YOLOv8深度学习的人员跌倒检测识别系统【python源码+GUI界面+数据集+训练代码+训练结果+登录界面】
摘要:本文提出了一种基于 YOLOv8 算法的人员跌倒检测系统,旨在提升公共场所的安全管理效率。针对传统检测方法在复杂场景下人员行为判断中的局限性,本研究采用改进型 YOLOv8 目标检测框架。系统首先构建包含站立、行走、跑步、跌倒等典型人员行为的多源视频图像数据库,通过数据增强策略优化样本多样性。系统架构集成图像预处理、动态推理和可视化分析模块,可实时处理公共场所采集的视频图像并输出人员行为定位及分类结果。原创 2025-03-31 16:38:19 · 1317 阅读 · 0 评论 -
基于YOLOv8深度学习的PCB缺陷检测识别系统【python源码+GUI界面+数据集+训练代码+登录界面】
本文提出了一种基于YOLOv8算法的印刷电路板(PCB)缺陷智能检测系统,旨在提升电子制造领域的质量控制效率。针对传统检测方法在复杂缺陷识别中的局限性,本研究采用改进型YOLOv8目标检测框架。系统首先构建包含短路、断路、焊点缺陷、划痕等典型缺陷的多源PCB图像数据库,通过数据增强策略优化样本多样性。系统架构集成图像预处理、动态推理和可视化分析模块,可实时处理产线采集的PCB图像并输出缺陷定位及分类结果。通过实验验证,基于YOLOv8的PCB缺陷检测系统展现出优异的准确性和实时性。原创 2025-03-26 10:05:31 · 1353 阅读 · 0 评论 -
基于YOLOv8深度学习的PCB缺陷检测识别系统【python源码+GUI界面+数据集+训练代码】
摘要:本文提出了一种基于YOLOv8算法的印刷电路板(PCB)缺陷智能检测系统,旨在提升电子制造领域的质量控制效率。针对传统检测方法在复杂缺陷识别中的局限性,本研究采用改进型YOLOv8目标检测框架。系统首先构建包含短路、断路、焊点缺陷、划痕等典型缺陷的多源PCB图像数据库,通过数据增强策略优化样本多样性。系统架构集成图像预处理、动态推理和可视化分析模块,可实时处理产线采集的PCB图像并输出缺陷定位及分类结果。通过实验验证,基于YOLOv8的PCB缺陷检测系统展现出优异的准确性和实时性。原创 2025-03-14 16:38:53 · 1069 阅读 · 0 评论 -
YOLOv8+PyQt5+GUI界面-脑肿瘤检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含检测页面、训练结果、权重文件)
数据集如下:该数据集包括总共 5,249 张 MRI 图像,分为训练集和验证集。每张图像都用 YOLO 格式的边界框进行注释,并带有对应于四类脑肿瘤之一的标签。0 类:神经胶质瘤1 类:脑膜瘤2 类:无肿瘤3类:垂体1. 训练集:神经胶质瘤: 1,153 图片脑膜瘤: 1,449 图片无肿瘤: 711 图片垂体: 1,424 图片2. 验证集:神经胶质瘤: 136 图片脑膜瘤: 140 图片无肿瘤:100 张图片垂体: 136 图片。原创 2024-11-03 21:37:31 · 723 阅读 · 0 评论