吴恩达深度学习知识点总结(复习)

逻辑回归

1、逻辑回归为什么不采用平方损失?
因为平方损失是一个非凸函数,利用梯度下降容易陷入局部最优
在这里插入图片描述2、sigmoid函数的导数
在这里插入图片描述
3、逻辑回归参数更新过程
在这里插入图片描述逻辑回归损失(交叉熵损失)和平方损失,计算得到的梯度dw和db是一的,dw=x(A-Y),db=A-Y,如果借助向量运算,同时计算m个样本,那么梯度需要对m求平均。在编码时,还需要考虑维度信息,如转置。。

浅层神经网络

1、为什么要使用非线性的激活函数?
如果使用线性激活函数,那么就只能进行线性变换,有再多的隐含层都是无用的,因为多次线性变换的结果与一次线性变换结果几乎没有区别,那么多个隐含层相当于浪费。。。
机器学习里也有用线性函数做激活函数的,那就是线性回归。
2、神经网络的反向传播公式:(一个隐含层)
注意:手推BP算法时,需要注意以下几点:

  • 在吴恩达课程中,最后的输出层的dz = A - Y;
  • 样本个数设为1还是n,如果设为n,涉及到求dw和db是需要除以n求平均,另外,样本数n会影响到b的维度,所以需要用sum先对n个b求和再求平均,但是w的维度只与每层神经元个数有关,所以不需要sum求和,只需要求平均;
  • 注意是矩阵乘积还是向量乘积;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值