O(nlogn)级排序之快速排序

本文深入探讨了快速排序算法,这是一种高效的排序方法,平均时间复杂度为O(nlogn)。文中通过代码示例详细解释了快速排序的分区过程和递归策略,展示了如何选取枢轴元素以及如何进行交换操作。尽管快速排序在最坏情况下时间复杂度为O(n^2),但在大多数实际应用中表现出良好的性能。此外,由于分区过程中相同数值的相对顺序可能改变,因此它是不稳定的排序算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【注】以下代码参考力扣<<排序算法全解析>>
快速排序:任意选取一组元素中的一个,将小于该元素的其他元素放在一边,将大于该元素的其他元素放在另一边,这样该元素就一次性找到了它的目标位置。然后再将两边的元素分别重复以上操作直到每边元素少于两个。

代码以选取每边第一个元素开始示例。

public static void quickSort(int[] arr) {
    quickSort(arr, 0, arr.length - 1);
}
public static void quickSort(int[] arr, int start, int end) {//这里(start,end)对于左边区域实参是(start,middle - 1),当实参start=middle时相当于形参start>end该区域无元素,当实参start=middle-1时相当于形参start==end该区域只有middle-1一个元素,对于右边区域实参是(middle+1,end)类似
    // 如果区域内的数字少于 2 个,退出递归
    if (start >= end) return;
    // 将数组分区,并获得中间值的下标
    int middle = partition(arr, start, end);
    // 对左边区域快速排序
    quickSort(arr, start, middle - 1);
    // 对右边区域快速排序
    quickSort(arr, middle + 1, end);
}
// 将 arr 从 start 到 end 分区,左边区域比基数小,右边区域比基数大,然后返回中间值的下标
public static int partition(int[] arr, int start, int end) {
    // 取第一个数为基数
    int pivot = arr[start];
    // 从第二个数开始分区
    int left = start + 1;
    // 右边界
    int right = end;
    while (left < right) {
        // 找到第一个大于基数的位置
        while (left < right && arr[left] <= pivot) left++;
        // 找到第一个小于基数的位置
        while (left < right && arr[right] >= pivot) right--;
        // 交换这两个数,使得左边分区都小于或等于基数,右边分区大于或等于基数
        if (left < right) {
            exchange(arr, left, right);
            left++;
            right--;
        }
    }
    // 如果 left 和 right 相等,单独比较 arr[right] 和 pivot
    if (left == right && arr[right] > pivot) right--;
    // 将基数和轴交换
    exchange(arr, start, right);
    return right;
}
private static void exchange(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

快速排序平均时间复杂度在O(nlogn),空间复杂度随递归层数变化,平均空间复杂度为O(logn),快速排序是不稳定的,在分区过程中,相同数字的相对顺序可能会被修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值