【注】以下代码参考力扣<<排序算法全解析>>
快速排序:任意选取一组元素中的一个,将小于该元素的其他元素放在一边,将大于该元素的其他元素放在另一边,这样该元素就一次性找到了它的目标位置。然后再将两边的元素分别重复以上操作直到每边元素少于两个。
代码以选取每边第一个元素开始示例。
public static void quickSort(int[] arr) {
quickSort(arr, 0, arr.length - 1);
}
public static void quickSort(int[] arr, int start, int end) {//这里(start,end)对于左边区域实参是(start,middle - 1),当实参start=middle时相当于形参start>end该区域无元素,当实参start=middle-1时相当于形参start==end该区域只有middle-1一个元素,对于右边区域实参是(middle+1,end)类似
// 如果区域内的数字少于 2 个,退出递归
if (start >= end) return;
// 将数组分区,并获得中间值的下标
int middle = partition(arr, start, end);
// 对左边区域快速排序
quickSort(arr, start, middle - 1);
// 对右边区域快速排序
quickSort(arr, middle + 1, end);
}
// 将 arr 从 start 到 end 分区,左边区域比基数小,右边区域比基数大,然后返回中间值的下标
public static int partition(int[] arr, int start, int end) {
// 取第一个数为基数
int pivot = arr[start];
// 从第二个数开始分区
int left = start + 1;
// 右边界
int right = end;
while (left < right) {
// 找到第一个大于基数的位置
while (left < right && arr[left] <= pivot) left++;
// 找到第一个小于基数的位置
while (left < right && arr[right] >= pivot) right--;
// 交换这两个数,使得左边分区都小于或等于基数,右边分区大于或等于基数
if (left < right) {
exchange(arr, left, right);
left++;
right--;
}
}
// 如果 left 和 right 相等,单独比较 arr[right] 和 pivot
if (left == right && arr[right] > pivot) right--;
// 将基数和轴交换
exchange(arr, start, right);
return right;
}
private static void exchange(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
快速排序平均时间复杂度在O(nlogn),空间复杂度随递归层数变化,平均空间复杂度为O(logn),快速排序是不稳定的,在分区过程中,相同数字的相对顺序可能会被修改。