定义
给定集合AAA,设映射f:A×A→Af:A\times A\rightarrow Af:A×A→A称为集合AAA上的二元运算(代数运算)。
集合AAA的二元运算满足以下三点:
- 可运算性:AAA中任意两个元素都满足该二元运算。
- 单值性:AAA中任意两个元素运算结果是唯一的。
- 封闭性:AAA中任意两个元素的结果仍然在集合AAA中。
举例:
整数集合ZZZ上的加法运算是一个二元运算。
正整数集合Z+Z^+Z+上的加法运算是一个二元运算,但减法不是二元运算。
结合律、交换律、分配律
设"⋅\cdot⋅"是集合的二元运算,如果对于集合中的任意三个元素a,b,ca,b,ca,b,c满足(a⋅b)⋅c=a⋅(b⋅c)(a\cdot b)\cdot c=a\cdot(b\cdot c)(a⋅b)⋅c=a⋅(b⋅c),那么称⋅\cdot⋅"在该集合上满足结合律。
设"⋅\cdot⋅"是集合的二元运算,如果对于集合中的任意两个元素a,ba,ba,b满足a⋅b=b⋅aa\cdot b=b\cdot aa⋅b=b⋅a,那么称⋅\cdot⋅"在该集合上满足交换律。
设"⋅,+\cdot,+⋅,+"是集合的两个二元运算,如果对于集合中的任意三个元素a,b,ca,b,ca,b,c满足a⋅(b+c)=a⋅b+a⋅c,(b+c)⋯a=b⋅a+c⋅aa\cdot (b+c)=a\cdot b+a\cdot c, (b+c)\cdots a=b\cdot a+c \cdot aa⋅(b+c)=a⋅b+a⋅c,(b+c)⋯a=b⋅a+c⋅a,那么称⋅\cdot⋅"对于+++在该集合上满足分配律。
举例:
整数集合ZZZ上的加法、乘法运算满足分配律和结合律
整数集合ZZZ上的乘法对加法满足分配律