数论15-二元运算,代数运算

定义

给定集合AAA,设映射f:A×A→Af:A\times A\rightarrow Af:A×AA称为集合AAA上的二元运算(代数运算)。
集合AAA的二元运算满足以下三点:

  1. 可运算性:AAA中任意两个元素都满足该二元运算。
  2. 单值性:AAA中任意两个元素运算结果是唯一的。
  3. 封闭性:AAA中任意两个元素的结果仍然在集合AAA中。

举例:
整数集合ZZZ上的加法运算是一个二元运算。
正整数集合Z+Z^+Z+上的加法运算是一个二元运算,但减法不是二元运算。

结合律、交换律、分配律
设"⋅\cdot"是集合的二元运算,如果对于集合中的任意三个元素a,b,ca,b,ca,b,c满足(a⋅b)⋅c=a⋅(b⋅c)(a\cdot b)\cdot c=a\cdot(b\cdot c)(ab)c=a(bc),那么称⋅\cdot"在该集合上满足结合律。

设"⋅\cdot"是集合的二元运算,如果对于集合中的任意两个元素a,ba,ba,b满足a⋅b=b⋅aa\cdot b=b\cdot aab=ba,那么称⋅\cdot"在该集合上满足交换律。

设"⋅,+\cdot,+,+"是集合的两个二元运算,如果对于集合中的任意三个元素a,b,ca,b,ca,b,c满足a⋅(b+c)=a⋅b+a⋅c,(b+c)⋯a=b⋅a+c⋅aa\cdot (b+c)=a\cdot b+a\cdot c, (b+c)\cdots a=b\cdot a+c \cdot aa(b+c)=ab+ac,(b+c)a=ba+ca,那么称⋅\cdot"对于+++在该集合上满足分配律。

举例:
整数集合ZZZ上的加法、乘法运算满足分配律和结合律
整数集合ZZZ上的乘法对加法满足分配律

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

密码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值