一、定义
一个元素个数有限的域称为有限域或者伽罗瓦域
有限域中元素个数为素数,记为GF(p)GF(p)GF(p)。
有限域中的元素运算满足交换律,结合律和分配律。
特征:存在某个正整数mmm,使得对任意域中元素aaa,ma=0ma=0ma=0,则称特征为mmm,CharF=mChar F=mCharF=m。
讨论每个元素非常麻烦,幸运的是我们只需要关注单位元。如果能使单位元称为0,那么该正整数就是特征。
有限域的特征一定是素数
证:
-
假设 ( p ) 不是素数:如果 ppp不是素数,那么 ppp可以表示为两个正整数p=a⋅bp = a \cdot bp=a⋅b,其中1<a,b<p1 < a, b < p1<a,b<p。
-
考虑a⋅b⋅1a \cdot b \cdot 1a⋅b⋅1:由于p⋅1=0p \cdot 1 = 0p⋅1=0(1为乘法单位元,特征的性质),我们有a⋅b⋅1=0a \cdot b \cdot 1 = 0a⋅b⋅1=0。
-
域的性质:在域中,乘法是结合的,所以a⋅(b⋅1)=0a \cdot (b \cdot 1) = 0a⋅(b⋅1)=0。由于b⋅1b \cdot 1b⋅1是域中的元素,且b≠pb \neq pb=p,所以b⋅1≠0b \cdot 1 \neq 0b⋅1=0。
-
矛盾:因此,我们得到a⋅(b⋅1)=0a \cdot (b \cdot 1) = 0a⋅(b⋅1)=0,其中a≠0a \neq 0a=0且b⋅1≠0b \cdot 1 \neq 0b⋅1=0。这与域的性质矛盾,因为在域中,两个非零元素的乘积不能为零(域无零因子)。
素域:不包含任何真子域的域(其任何真子集都不能构成域)。
定理:阶为素数ppp的有限域必然是素域,特征为这个素数ppp。
证:设KKK是FFF的子域,那么KKK的加法群是FFF加法群的子群,那么∣K∣ ∣ ∣F∣|K| ~|~|F|∣K∣ ∣ ∣F∣,∣F∣|F|∣F∣是素数,因此∣K∣=∣F∣|K|=|F|∣K∣=∣F∣
因为有限域特征为素数,假设FFF特征为p′p'p′。那么K={e,2e,...,p′e}K=\{e,2e,...,p'e\}K={e,2e,...,p′e}互不相等。封闭性知K⊂FK\subset FK⊂F,所以p′<pp'<pp′<p。KKK是FFF真子域。矛盾。
定理:特征为素数ppp的域FFF的素子域同构于ZpZ_pZp
证:设PPP是FFF的子域,那么0,1∈P0,1\in P0,1∈P。FFF的特征为ppp,因为0,1∈P0,1\in P0,1∈P,所以有{m⋅1∣m∈Z}⊂P\{m\cdot 1|m\in Z\}\subset P{m⋅1∣m∈Z}⊂P。构造映射ϕ:Z→P:m→m⋅1\phi:Z \rightarrow P: m\rightarrow m\cdot 1ϕ:Z→P:m→m⋅1。
ϕ\phiϕ是环同态映射,kerϕ=<p>ker\phi=<p>kerϕ=<p>。所以Zp=Z/kerϕZ_p=Z/ker\phiZp=Z/kerϕ同构于ϕ(Z)⊂P\phi(Z)\subset Pϕ(Z)⊂P.因为ZpZ_pZp是域,PPP是素域,所以两者同构。
代数元:设KKK是FFF的子域,a∈Fa\in Fa∈F,如果aaa是KKK上某个非零多项式的根,则称aaa是KKK上的代数元。如果KKK上的一个扩张的所有元素均为KKK上的代数元,那么称之为代数扩张。
设KKK是FFF的子域,a∈Fa\in Fa∈F,如果aaa是KKK上一个代数元,则K[x]K[x]K[x]中满足f(a)=0f(a)=0f(a)=0的次数最小的多项式称之为aaa在KKK上的极小多项式,该多项式次数称之为代数元次数。极小多项式一定是不可约多项式。
设KKK是FFF的子域,∣K∣=q|K|=q∣K∣=q,[F:K]=n[F:K]=n[F:K]=n,则∣F∣=qn|F|=q^n∣F∣=qn。
证:FFF看作向量空间,KKK看作基域,FFF的基为b1,...bnb_1,...b_nb1,...bn。FFF中的元素均可以表示为a1b1+...+anbn,ai∈Ka_1b_1+...+a_nb_n,a_i\in Ka1b1+...+anbn,ai∈K。因为∣K∣=q|K|=q∣K∣=q,所以一共有qnq^nqn中线性表示。∣F∣=qn|F|=q^n∣F∣=qn
任何有限域的阶必然是pnp^npn形式的整数
证:
-
素域:任何有限域 FFF都包含一个素子域GF(p)GF(p)GF(p),其中ppp是FFF的特征。素域 GF(p)GF(p)GF(p) 是包含 ppp个元素的域,它的元素是{0,1,2,…,p−1}\{0, 1, 2, \ldots, p-1\}{0,1,2,…,p−1}。
-
扩张次数:有限域FFF可以看作是素域 GF(p)GF(p)GF(p)的一个扩张。设 [F:GF(p)]=n[F:GF(p)] = n[F:GF(p)]=n,这意味着 FFF 可以看作是 GF(p)GF(p)GF(p)上的 nnn 维向量空间。
-
元素个数:由于FFF是 GF(p)GF(p)GF(p) 上的 nnn 维向量空间,FFF 中的任何元素都可以唯一地表示为 GF(p)GF(p)GF(p) 中元素的线性组合。因此,FFF 中的元素个数是 pnp^npn。
-
结论:因此,任何有限域的阶必然是 pnp^npn 形式的整数。
具有相同元素个数的有限域都是同构的,因此阶为ppp的有限域统一用GF(p)GF(p)GF(p)表示。
举例:
F9F_9F9可以看作F3F_3F3通过添加一个二次不可约多项式的根aaa得到的代数扩张。极小多项式为f(x)=x2+1f(x)=x^2+1f(x)=x2+1是F3F_3F3上的不可约多项式。设aaa为其在F9F_9F9的根,即a2+1=0a^2+1=0a2+1=0。则1,a1,a1,a是F9F_9F9在F3F_3F3的一组基,从而通过代数扩张得到F9={0,1,2,a,1+a,2+a,2a,1+2a,2+2a}F_9=\{0,1,2,a,1+a,2+a,2a,1+2a,2+2a\}F9={0,1,2,a,1+a,2+a,2a,1+2a,2+2a}。
从上面已知任何有限域的阶必然是pnp^npn形式的整数,那么对任意素数ppp,任意正整数nnn,是否存在阶位pnp^npn的有限域呢?答案是肯定的!
设FFF的阶为qqq,KKK是FFF的子域,∀a∈F\forall a\in F∀a∈F:
- aq=aa^q=aaq=a
- xq−x∈K[x]x^q-x\in K[x]xq−x∈K[x]在KKK上的分裂域为FFF,且xq−x=∏a∈F(x−a)x^q-x=\prod_{a\in F}(x-a)xq−x=∏a∈F(x−a)
证:
- aaa为零元,显然成立。aaa不为零元,FFF中的非零元构成乘法阿贝尔群,阶位q−1q-1q−1,aq−1=ea^{q-1}=eaq−1=e,所以aq=aa^q=aaq=a。
- 由1知,FFF的元素与多项式的根一一对应。 FFF的元素都是xq−xx^q-xxq−x的根。所以xq−x=∏a∈F(x−a)x^q-x=\prod_{a\in F}(x-a)xq−x=∏a∈F(x−a)。所以xq−xx^q-xxq−x在FFF里分裂,KKK上的分裂域为FFF。
对于任意的素数ppp,任意正整数nnn,都存在阶为pnp^npn的有限域。任何阶为pnp^npn的有限域同构于xpn−xx^{p^n}-xxpn−x在ZpZ_pZp的分裂域。
证:设FFF是xq−xx^q-xxq−x在ZpZ_pZp的分裂域(q=pnq=p^nq=pn)。该多项式(模p)导数为1.因此该多项式在FFF有qqq个不同的根。
设S={a∈F∣aq−a=0}S=\{a\in F|a^q-a=0\}S={a∈F∣aq−a=0},可以证明SSS是FFF的子域。又因为f(x)f(x)f(x)在SSS中可以分解成一次因式的乘积,SSS是在ZpZ_pZp的分裂域。f(x)f(x)f(x)在ZpZ_pZp任意两个分裂域同构。则S=FS=FS=F,∣S∣=q|S|=q∣S∣=q,所以∣F∣=q|F|=q∣F∣=q。
∣F∣=pn|F|=p^n∣F∣=pn,FFF特征为ppp,所以包含同构于ZpZ_pZp的素子域。所以Zp[x]Z_p[x]Zp[x]上xpn−xx^{p^n}-xxpn−x的分裂域为FFF。分裂域唯一,所以任何阶为pnp^npn的有限域同构于xpn−xx^{p^n}-xxpn−x在ZpZ_pZp的分裂域。
举例:
好的,让我们通过一个具体的例子来说明分裂域的概念。
例子:分裂域的构造
假设我们有一个多项式f(x)=x2−2f(x) = x^2 - 2f(x)=x2−2,我们想要找到这个多项式在有理数域 Q\mathbb{Q}Q 上的分裂域。
-
确定多项式的根:
- 多项式f(x)=x2−2f(x) = x^2 - 2f(x)=x2−2的根是2\sqrt{2}2和−2-\sqrt{2}−2。
- 这两个根都不是有理数,因此它们不在 Q\mathbb{Q}Q 中。
-
构造分裂域:
- 为了构造 f(x)f(x)f(x) 在 Q\mathbb{Q}Q 上的分裂域,我们需要包含这两个根。
- 考虑域扩张 Q(2)\mathbb{Q}(\sqrt{2})Q(2),这是包含2\sqrt{2}2 的最小域。
- 由于 −2-\sqrt{2}−2可以通过乘以 −1-1−1从 2\sqrt{2}2 得到,而 −1-1−1已经在 Q\mathbb{Q}Q中,所以 −2-\sqrt{2}−2 也在 Q(2)\mathbb{Q}(\sqrt{2})Q(2) 中。
-
验证分裂域:
- 在 Q(2)\mathbb{Q}(\sqrt{2})Q(2) 中,多项式 f(x)f(x)f(x)可以分解为 (x−2)(x+2)(x - \sqrt{2})(x + \sqrt{2})(x−2)(x+2)。
- 因此,Q(2)\mathbb{Q}(\sqrt{2})Q(2) 是包含 f(x)f(x)f(x)所有根的最小域扩张。
-
结论:
- 多项式 f(x)=x2−2f(x) = x^2 - 2f(x)=x2−2在 Q\mathbb{Q}Q 上的分裂域是 Q(2)\mathbb{Q}(\sqrt{2})Q(2)。
域 Q(2)\mathbb{Q}(\sqrt{2})Q(2)包含所有可以表示为a+b2a + b\sqrt{2}a+b2形式的数,其中aaa和bbb是有理数。
- 多项式 f(x)=x2−2f(x) = x^2 - 2f(x)=x2−2在 Q\mathbb{Q}Q 上的分裂域是 Q(2)\mathbb{Q}(\sqrt{2})Q(2)。
因此具有相同个数的有限域是同构的。