有限域、伽罗瓦域、扩域、素域、代数扩张、分裂域概念解释

一、定义

一个元素个数有限的称为有限域或者伽罗瓦域
有限域中元素个数为素数,记为GF(p)GF(p)GF(p)
有限域中的元素运算满足交换律,结合律和分配律。

特征:存在某个正整数mmm,使得对任意域中元素aaa,ma=0ma=0ma=0,则称特征为mmmCharF=mChar F=mCharF=m
讨论每个元素非常麻烦,幸运的是我们只需要关注单位元。如果能使单位元称为0,那么该正整数就是特征。

有限域的特征一定是素数
证:

  1. 假设 ( p ) 不是素数:如果 ppp不是素数,那么 ppp可以表示为两个正整数p=a⋅bp = a \cdot bp=ab,其中1<a,b<p1 < a, b < p1<a,b<p

  2. 考虑a⋅b⋅1a \cdot b \cdot 1ab1:由于p⋅1=0p \cdot 1 = 0p1=0(1为乘法单位元,特征的性质),我们有a⋅b⋅1=0a \cdot b \cdot 1 = 0ab1=0

  3. 域的性质:在域中,乘法是结合的,所以a⋅(b⋅1)=0a \cdot (b \cdot 1) = 0a(b1)=0。由于b⋅1b \cdot 1b1是域中的元素,且b≠pb \neq pb=p,所以b⋅1≠0b \cdot 1 \neq 0b1=0

  4. 矛盾:因此,我们得到a⋅(b⋅1)=0a \cdot (b \cdot 1) = 0a(b1)=0,其中a≠0a \neq 0a=0b⋅1≠0b \cdot 1 \neq 0b1=0。这与域的性质矛盾,因为在域中,两个非零元素的乘积不能为零(域无零因子)。

素域:不包含任何真子域的域(其任何真子集都不能构成域)。

定理:阶为素数ppp的有限域必然是素域,特征为这个素数ppp
证:设KKKFFF的子域,那么KKK的加法群是FFF加法群的子群,那么∣K∣ ∣ ∣F∣|K| ~|~|F|K  F∣F∣|F|F是素数,因此∣K∣=∣F∣|K|=|F|K=F
因为有限域特征为素数,假设FFF特征为p′p'p。那么K={e,2e,...,p′e}K=\{e,2e,...,p'e\}K={e,2e,...,pe}互不相等。封闭性知K⊂FK\subset FKF,所以p′<pp'<pp<pKKKFFF真子域。矛盾。

定理:特征为素数ppp的域FFF的素子域同构于ZpZ_pZp
证:设PPPFFF的子域,那么0,1∈P0,1\in P0,1PFFF的特征为ppp,因为0,1∈P0,1\in P0,1P,所以有{m⋅1∣m∈Z}⊂P\{m\cdot 1|m\in Z\}\subset P{m1∣mZ}P。构造映射ϕ:Z→P:m→m⋅1\phi:Z \rightarrow P: m\rightarrow m\cdot 1ϕ:ZP:mm1
ϕ\phiϕ是环同态映射,kerϕ=<p>ker\phi=<p>kerϕ=<p>。所以Zp=Z/kerϕZ_p=Z/ker\phiZp=Z/kerϕ同构于ϕ(Z)⊂P\phi(Z)\subset Pϕ(Z)P.因为ZpZ_pZp是域,PPP是素域,所以两者同构。

代数元:设KKKFFF的子域,a∈Fa\in FaF,如果aaaKKK上某个非零多项式的根,则称aaaKKK上的代数元。如果KKK上的一个扩张的所有元素均为KKK上的代数元,那么称之为代数扩张。

KKKFFF的子域,a∈Fa\in FaF,如果aaaKKK上一个代数元,则K[x]K[x]K[x]中满足f(a)=0f(a)=0f(a)=0的次数最小的多项式称之为aaaKKK上的极小多项式,该多项式次数称之为代数元次数。极小多项式一定是不可约多项式。

KKKFFF的子域,∣K∣=q|K|=qK=q[F:K]=n[F:K]=n[F:K]=n,则∣F∣=qn|F|=q^nF=qn
证:FFF看作向量空间,KKK看作基域,FFF的基为b1,...bnb_1,...b_nb1,...bnFFF中的元素均可以表示为a1b1+...+anbn,ai∈Ka_1b_1+...+a_nb_n,a_i\in Ka1b1+...+anbn,aiK。因为∣K∣=q|K|=qK=q,所以一共有qnq^nqn中线性表示。∣F∣=qn|F|=q^nF=qn

任何有限域的阶必然是pnp^npn形式的整数
证:

  1. 素域:任何有限域 FFF都包含一个素子域GF(p)GF(p)GF(p),其中pppFFF的特征。素域 GF(p)GF(p)GF(p) 是包含 ppp个元素的域,它的元素是{0,1,2,…,p−1}\{0, 1, 2, \ldots, p-1\}{0,1,2,,p1}

  2. 扩张次数:有限域FFF可以看作是素域 GF(p)GF(p)GF(p)的一个扩张。设 [F:GF(p)]=n[F:GF(p)] = n[F:GF(p)]=n,这意味着 FFF 可以看作是 GF(p)GF(p)GF(p)上的 nnn 维向量空间。

  3. 元素个数:由于FFFGF(p)GF(p)GF(p) 上的 nnn 维向量空间,FFF 中的任何元素都可以唯一地表示为 GF(p)GF(p)GF(p) 中元素的线性组合。因此,FFF 中的元素个数是 pnp^npn

  4. 结论:因此,任何有限域的阶必然是 pnp^npn 形式的整数。

具有相同元素个数的有限域都是同构的,因此阶为ppp的有限域统一用GF(p)GF(p)GF(p)表示。

举例:
F9F_9F9可以看作F3F_3F3通过添加一个二次不可约多项式的根aaa得到的代数扩张。极小多项式为f(x)=x2+1f(x)=x^2+1f(x)=x2+1F3F_3F3上的不可约多项式。设aaa为其在F9F_9F9的根,即a2+1=0a^2+1=0a2+1=0。则1,a1,a1,aF9F_9F9F3F_3F3的一组基,从而通过代数扩张得到F9={0,1,2,a,1+a,2+a,2a,1+2a,2+2a}F_9=\{0,1,2,a,1+a,2+a,2a,1+2a,2+2a\}F9={0,1,2,a,1+a,2+a,2a,1+2a,2+2a}

从上面已知任何有限域的阶必然是pnp^npn形式的整数,那么对任意素数ppp,任意正整数nnn,是否存在阶位pnp^npn的有限域呢?答案是肯定的!

FFF的阶为qqqKKKFFF的子域,∀a∈F\forall a\in FaF:

  1. aq=aa^q=aaq=a
  2. xq−x∈K[x]x^q-x\in K[x]xqxK[x]KKK上的分裂域为FFF,且xq−x=∏a∈F(x−a)x^q-x=\prod_{a\in F}(x-a)xqx=aF(xa)

证:

  1. aaa为零元,显然成立。aaa不为零元,FFF中的非零元构成乘法阿贝尔群,阶位q−1q-1q1aq−1=ea^{q-1}=eaq1=e,所以aq=aa^q=aaq=a
  2. 由1知,FFF的元素与多项式的根一一对应。 FFF的元素都是xq−xx^q-xxqx的根。所以xq−x=∏a∈F(x−a)x^q-x=\prod_{a\in F}(x-a)xqx=aF(xa)。所以xq−xx^q-xxqxFFF里分裂,KKK上的分裂域为FFF

对于任意的素数ppp,任意正整数nnn,都存在阶为pnp^npn的有限域。任何阶为pnp^npn的有限域同构于xpn−xx^{p^n}-xxpnxZpZ_pZp的分裂域。
证:设FFFxq−xx^q-xxqxZpZ_pZp的分裂域(q=pnq=p^nq=pn)。该多项式(模p)导数为1.因此该多项式在FFFqqq个不同的根。
S={a∈F∣aq−a=0}S=\{a\in F|a^q-a=0\}S={aFaqa=0},可以证明SSSFFF的子域。又因为f(x)f(x)f(x)SSS中可以分解成一次因式的乘积,SSS是在ZpZ_pZp的分裂域。f(x)f(x)f(x)ZpZ_pZp任意两个分裂域同构。则S=FS=FS=F,∣S∣=q|S|=qS=q,所以∣F∣=q|F|=qF=q
∣F∣=pn|F|=p^nF=pnFFF特征为ppp,所以包含同构于ZpZ_pZp的素子域。所以Zp[x]Z_p[x]Zp[x]xpn−xx^{p^n}-xxpnx的分裂域为FFF。分裂域唯一,所以任何阶为pnp^npn的有限域同构于xpn−xx^{p^n}-xxpnxZpZ_pZp的分裂域。

举例:
好的,让我们通过一个具体的例子来说明分裂域的概念。

例子:分裂域的构造

假设我们有一个多项式f(x)=x2−2f(x) = x^2 - 2f(x)=x22,我们想要找到这个多项式在有理数域 Q\mathbb{Q}Q 上的分裂域。

  1. 确定多项式的根

    • 多项式f(x)=x2−2f(x) = x^2 - 2f(x)=x22的根是2\sqrt{2}2−2-\sqrt{2}2
    • 这两个根都不是有理数,因此它们不在 Q\mathbb{Q}Q 中。
  2. 构造分裂域

    • 为了构造 f(x)f(x)f(x)Q\mathbb{Q}Q 上的分裂域,我们需要包含这两个根。
    • 考虑域扩张 Q(2)\mathbb{Q}(\sqrt{2})Q(2),这是包含2\sqrt{2}2 的最小域。
    • 由于 −2-\sqrt{2}2可以通过乘以 −1-112\sqrt{2}2 得到,而 −1-11已经在 Q\mathbb{Q}Q中,所以 −2-\sqrt{2}2 也在 Q(2)\mathbb{Q}(\sqrt{2})Q(2) 中。
  3. 验证分裂域

    • Q(2)\mathbb{Q}(\sqrt{2})Q(2) 中,多项式 f(x)f(x)f(x)可以分解为 (x−2)(x+2)(x - \sqrt{2})(x + \sqrt{2})(x2)(x+2)
    • 因此,Q(2)\mathbb{Q}(\sqrt{2})Q(2) 是包含 f(x)f(x)f(x)所有根的最小域扩张。
  4. 结论

    • 多项式 f(x)=x2−2f(x) = x^2 - 2f(x)=x22Q\mathbb{Q}Q 上的分裂域是 Q(2)\mathbb{Q}(\sqrt{2})Q(2)
      Q(2)\mathbb{Q}(\sqrt{2})Q(2)包含所有可以表示为a+b2a + b\sqrt{2}a+b2形式的数,其中aaabbb是有理数。

因此具有相同个数的有限域是同构的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

密码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值