python:使用机器学习算法对卫星遥感影像进行分类

本文介绍了如何使用Python和机器学习算法(kmeans)对卫星遥感影像进行分类。通过数据预处理、模型建立、结果获取和保存,详细展示了分类流程。了解这一流程后,可以方便地替换其他机器学习算法进行监督或非监督分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前写过一篇使用R语言对卫星影像进行kmeans聚类的文章,本文来个python版本的。

Python版的没有R语言版本的简单(代码多了一些),但是通过Python版的学习可以清楚了解到对卫星影像进行分类的整个流程。因为Python在机器学习/深度学习方面比较通用,学会了本文之后,就学会了任何基于机器学习对卫星影像进行分类的流程,只需要换下中间的分类算法即可。

公众号《GIS与Climate》,分享R、Python、GIS和Climate的相关技术,求关注。

导入需要的包

因为本文用的是kmeans算法,也没什么高大上的,需要的包也就比较少:

import rasterio as rio
from rasterio.plot import show
from sklearn import cluster
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as mc

读取数据

我们用rasterio包来读取栅格数据(这里以tif格式作为示例):

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值