数据化管理洞悉零售及电子商务——数据分析方法

本文深入探讨了数据分析的立体化方法,包括三维分析的点-线-面、时间-对象-指标、人-场-货、广度-宽度-深度等维度。强调了对比原则在数据分析中的重要性,并介绍了设定指标权重、二八法则、ABC分析法等常用方法。此外,还讨论了数据展示技巧,如雷达图、K线图、热力图和四象限图的应用,以帮助洞悉零售和电子商务领域的运营状况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析方法

数据分析的立体化

三维分析之点-线-面(最基本的一种分析及思维方式)

  • 点是某个节点的一个指标值
  • 线是包含这个点的纵向发展趋势或者是包含这个点的横向对比趋势
  • 面是包含这个点的上一级或上几级对象的指标值
  • 1月15日完成了当月目标的55%(点),该区域的日销售趋势是向好还是趋坏(线),最后看截止到15日全国和其他区域的完成情况及走势(面)

三维分析之时间-对象-指标

  • 只有说清楚了什么对象的什么时间点的什么指标才有意义

三维分析之人-场-货

  • 昨天有多少营运人员完成当日销售目标?盯住人
  • 销售前十大商品库存有多少?防止缺货
  • 昨天的流量和转化率是多少?盯住场

三维分析之广度-宽度-深度

  • 三度和商品进销存的组合

    • 商品采购的广度

      • 商品采购的品类总数
    • 商品采购的宽度

      • 商品采购的SKU总数
    • 商品采购的深度

      • 平均每个SKU商品的采购数量
  • 三度和4P的组合分析

    • 价格线的数量
    • 价格带的宽度
    • 价格带中的产品SKU数
  • 三度、进销存和4P的再组合

    • 促销-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值