GAMES101第九讲Shading 3笔记

一、重心坐标(Barycentric Coordinates)

(1)为什么我们想要做插值?
①已知三角形三个顶点的属性,想要获得三角形内部平滑变化的属性(如纹理坐标,颜色,法线等)。
②使用重心坐标可以实现插值。
(2)重心坐标是对一个三角形(α,β,γ)而言的。
重心坐标1
①不同的三角形对应不同的重心坐标系。
②α,β,γ均为非负且和为1时,该点在三角形内。
③三角形内任意一点均可以用重心坐标表示。如点A的重心坐标为(1,0,0),点B的重心坐标为(0,1,0)。
④进行投影之后,该三角形可能会变成形变,那么重心坐标就可能会发生变化。
(3)从几何的角度看
重心坐标2
①以α为例,α与A相关,α的值就是A顶点对面的三角形的面积AA与三角形ABC的面积之比。
(4)重心坐标的计算公式如下:
重心坐标3
(5)重心坐标的使用
重心坐标4
①已知三个顶点的属性和某个点的重心坐标,则可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值