51nod 1007正整数分组(动态规划)

探讨了如何通过动态规划解决正整数分组问题,目的是寻找两组数之和相差最小的组合方式。该文详细解释了算法原理,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1007

动态规划

修改 隐藏话题

1007 正整数分组 

基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题

 收藏

 关注

将一堆正整数分为2组,要求2组的和相差最小。

例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。

Input

第1行:一个数N,N为正整数的数量。
第2 - N+1行,N个正整数。
(N <= 100, 所有正整数的和 <= 10000)

Output

输出这个最小差

Input示例

5
1
2
3
4
5

Output示例

1

先开始毫无思路,标签动态规划,01背包是一定的被包装最多的东西。这道题是求总和最接近一半的值,就用动态规划的01背包求出一半的值,总的减去接近一半的二倍就为结果

#include<iostream>
using namespace std;
int a[110];
int dp[110][110*110];
int main()
{
	int n,sum=0;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		sum+=a[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=sum/2;j>=a[i];j--)
		{
			dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i]]+a[i]);
		}
	}
	cout<<sum-2*dp[n][sum/2]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值