基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和。
Input
第一行包含一个正整数n (n <= 100000),表示节点个数。 后面(n - 1)行,每行两个整数表示树的边。
Output
每行一个整数,第i(i = 1,2,...n)行表示所有节点到第i个点的距离之和。
Input示例
4 1 2 3 2 4 2
Output示例
5 3 5 5
#include<iostream>
#include<vector>
#include<string.h>
#include<cstdio>
#define ll long long
#define maxn 100005
using namespace std;
vector<int>v[maxn];
int vist[maxn];
ll dp[maxn];
int num[maxn];
int n;
int dfs(int u,int sum)
{
dp[1]+=sum;
num[u]=1;
vist[u]=1;
for(int i=0;i<v[u].size();i++)
{
int q=v[u][i];
if(vist[q]==0)
{
dfs(q,sum+1);
num[u]+=num[q];
}
}
}
void dfs_dp(int u)
{
vist[u]=1;
for(int i=0;i<v[u].size();i++)
{
int q=v[u][i];
if(vist[q]==0)
{
dp[q]=dp[u]-num[q]+(n-num[q]);//如果向子树移去,所有的u子节点距离都会减一,而v的子节点的数会加1;
//q为对应的u节点所以减去num【q】而加上总数减去num【q】
dfs_dp(q);
}
}
}
int main()
{
scanf("%d",&n);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
v[a].push_back(b);
v[b].push_back(a);
}
memset(vist,0,sizeof(vist));
dfs(1,0);
memset(vist,0,sizeof(vist));
dfs_dp(1);
for(int i=1;i<=n;i++)
cout<<dp[i]<<endl;
return 0;
}