51nod 1405 树的距离之和(树形dp)

本文介绍了一种解决树上两点间距离之和问题的有效算法。通过两次深度优先搜索(DFS),分别计算每个节点的子树大小及节点到树中所有其他节点的距离之和。适用于节点数量不超过10万的大规模树形结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1405 树的距离之和 

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题

 收藏

 关注

给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和。

Input

第一行包含一个正整数n (n <= 100000),表示节点个数。
后面(n - 1)行,每行两个整数表示树的边。

Output

每行一个整数,第i(i = 1,2,...n)行表示所有节点到第i个点的距离之和。

Input示例

4
1 2
3 2
4 2

Output示例

5
3
5
5
#include<iostream>
#include<vector>
#include<string.h>
#include<cstdio>
#define ll long long
#define maxn 100005
using namespace std;
vector<int>v[maxn];
int vist[maxn];
ll dp[maxn];
int num[maxn];
int n;
int dfs(int u,int sum)
{
    dp[1]+=sum;
    num[u]=1;
    vist[u]=1;
    for(int i=0;i<v[u].size();i++)
    {
        int q=v[u][i];
        if(vist[q]==0)
        {
            dfs(q,sum+1);
            num[u]+=num[q];
        }
    }
}
void dfs_dp(int u)
{
    vist[u]=1;
    for(int i=0;i<v[u].size();i++)
    {
        int q=v[u][i];
        if(vist[q]==0)
        {
            dp[q]=dp[u]-num[q]+(n-num[q]);//如果向子树移去,所有的u子节点距离都会减一,而v的子节点的数会加1;
            //q为对应的u节点所以减去num【q】而加上总数减去num【q】
            dfs_dp(q);
        }
    }
}
int main()
{
    scanf("%d",&n);
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n-1;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        v[a].push_back(b);
        v[b].push_back(a);
    }
    memset(vist,0,sizeof(vist));
    dfs(1,0);
    memset(vist,0,sizeof(vist));
    dfs_dp(1);
    for(int i=1;i<=n;i++)
        cout<<dp[i]<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值