机器学习-白板推导系列笔记(七)-核方法

本文主要探讨了在机器学习中遇到线性不可分问题时,如何通过核方法解决。介绍了核方法的引入背景,即避免在高维空间中进行复杂计算,以及正定核函数的概念和其对称性、正定性的证明。通过核函数,可以简化支持向量机等算法的运算量,实现非线性问题的线性可分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此文章主要是结合哔站shuhuai008大佬的白板推导视频:核方法_101min

全部笔记的汇总贴:机器学习-白板推导系列笔记

一、线性不可分问题

有时线性可分的数据夹杂一点噪声,可以通过改进算法来实现分类,比如感知机的口袋算法和支持向量机的软间隔。但是有时候数据往往完全不是线性可分的,比如下面这种情况:
在这里插入图片描述
在异或问题中数据往往不是线性可分的,但通过将数据映射到高维空间后就可以实现线性可分。可以认为高维空间中的数据比低维空间的数据更易线性可分。对于异或问题,我们可以通过寻找一个映射 ϕ ( x ) \phi (x) ϕ(x)将低维空间中的数据 x x x映射成高维空间中的z来实现数据的线性可分,例如:

x = ( x 1 , x 2 ) ⏟ 二 维 → ϕ ( x ) z = ( x 1 , x 2 , ( x 1 − x 2 ) 2 ) ⏟ 三 维 \underset{二维}{\underbrace{x=(x_{1},x_{2})}}\overset{\phi (x)}{\rightarrow}\underset{三维}{\underbrace{z=(x_{1},x_{2},(x_{1}-x_{2})^{2})}} x=(x1,x2)ϕ(x) z=(x1,x2,(x1x2)2)

然后在新的空间中,该数据就可以实现线性可分:
在这里插入图片描述

二、核方法的引出

映射到高维空间以后出现的问题是计算复杂度的加大,例如在支持向量机的求解过程中求解的优化问题可以转换为如下的优化问题:

{ m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j x i T x j − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}x_{i}^{T}x_{j}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right. { λmin21i=1Nj=1NλiλjyiyjxiTxji=1Nλi,i=1,2,,Nλi0,i=1,2,,N

将数据映射到高维空间后也就需要求解以下优化问题:

{ m i n λ    1 2 ∑ i = 1 N ∑ j = 1 N λ i λ j y i y j ϕ ( x i ) T ϕ ( x j ) − ∑ i = 1 N λ i , i = 1 , 2 , ⋯   , N λ i ≥ 0 , i = 1 , 2 , ⋯   , N \left\{\begin{matrix} \underset{\lambda }{min}\; \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda _{i}\lambda _{j}y_{i}y_{j}{\color{Red}{\phi (x_{i})^{T}\phi (x_{j})}}-\sum_{i=1}^{N}\lambda _{i},i=1,2,\cdots ,N \\ \lambda _{i}\geq 0,i=1,2,\cdots ,N \end{matrix}\right. { λmin21i=1Nj=1Nλiλjyiyjϕ(xi)Tϕ(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值