中科大-凸优化 笔记(lec8)-保凸变换(下)

本文是中科大凸优化课程的笔记,重点讲解了椭球与仿射映射的关系、透视函数的性质以及线性分数函数如何保持凸性。通过仿射变换和透视变换,阐述了凸集的反透视映射仍然是凸集的原理,并探讨了线性分数函数作为保凸变换的应用,如条件概率的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、椭球是球的仿射映射

ε = { x ∣ ( x − x c ) T P − 1 ( x − x c ) }      P ∈ S + + n { u ∣    ∣ ∣ u ∣ ∣ 2 ≤ 1 }        P 1 2 P 1 2 = P \varepsilon=\{x|(x-x_c)^TP^{-1}(x-x_c)\}\;\;P\in S_{++}^n\\\{u|\;||u||_2\le1\}\;\;\;P^{\frac12}P^{\frac12}=P ε={ x(xxc)TP1(xxc)}PS++n{ uu21}P21P21=P
f ( u ) = P 1 2 u + x c { f ( u ) ∣    ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { P 1 2 u + x c ∣    ∣ ∣ u ∣ ∣ 2 ≤ 1 } f(u)=P^{\frac12}u+x_c\\\{f(u)|\;||u||_2\le1\}=\{P^{\frac12}u+x_c|\;||u||_2\le1\} f(u)=P21u+xc{ f(u)u21}={ P21u+xcu21}
我们令 x = Δ P 1 2 u + x c        u = P − 1 2 ( x − x c ) x\overset{\Delta}{=}P^{\frac12}u+x_c\;\;\;u=P^{-\frac12}(x-x_c) x=ΔP21u+xcu=P21(xxc)
所以, { f ( u ) ∣    ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x ∣    ∣ ∣ P − 1 2 ( x − x c ) ∣ ∣ 2 ≤ 1 } = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \{f(u)|\;||u||_2\le1\}=\{x|\;||P^{-\frac12}(x-x_c)||_2\le1\}\\=\{x|(x-x_c)^TP^{-1}(x-x_c)\le1\} { f(u)u21}={ xP21(xxc)21}={

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值