全部笔记的汇总贴(视频也有传送门):中科大-凸优化
一、椭球是球的仿射映射
ε = { x ∣ ( x − x c ) T P − 1 ( x − x c ) } P ∈ S + + n { u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } P 1 2 P 1 2 = P \varepsilon=\{x|(x-x_c)^TP^{-1}(x-x_c)\}\;\;P\in S_{++}^n\\\{u|\;||u||_2\le1\}\;\;\;P^{\frac12}P^{\frac12}=P ε={
x∣(x−xc)TP−1(x−xc)}P∈S++n{
u∣∣∣u∣∣2≤1}P21P21=P
f ( u ) = P 1 2 u + x c { f ( u ) ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { P 1 2 u + x c ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } f(u)=P^{\frac12}u+x_c\\\{f(u)|\;||u||_2\le1\}=\{P^{\frac12}u+x_c|\;||u||_2\le1\} f(u)=P21u+xc{
f(u)∣∣∣u∣∣2≤1}={
P21u+xc∣∣∣u∣∣2≤1}
我们令 x = Δ P 1 2 u + x c u = P − 1 2 ( x − x c ) x\overset{\Delta}{=}P^{\frac12}u+x_c\;\;\;u=P^{-\frac12}(x-x_c) x=ΔP21u+xcu=P−21(x−xc)
所以, { f ( u ) ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x ∣ ∣ ∣ P − 1 2 ( x − x c ) ∣ ∣ 2 ≤ 1 } = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \{f(u)|\;||u||_2\le1\}=\{x|\;||P^{-\frac12}(x-x_c)||_2\le1\}\\=\{x|(x-x_c)^TP^{-1}(x-x_c)\le1\} {
f(u)∣∣∣u∣∣2≤1}={
x∣∣∣P−21(x−xc)∣∣2≤1}={