中科大-凸优化 笔记(lec41)-可微凸优化问题的罚函数形式

这篇博客是中科大凸优化课程的笔记,主要讨论了带线性不等式约束的可微凸优化问题。通过罚函数形式,解释了如何处理这类问题。文章中举例说明了如何利用罚函数L(x, v) = f0(x) + vT(Ax - b),并介绍了优化目标P*与罚参数α的关系,展示了当α从0变化到正无穷时,解的变化情况。" 109700957,7405643,深入理解Spring Bean的导入机制,"['Spring框架', 'Bean管理', 'XML配置', '注解编程']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

在这里插入图片描述

例:

在这里插入图片描述
在这里插入图片描述
⇒ L ( x , v ) = f 0 ( x ) + v T ( A x − b ) ⇒ g ( v ) = inf ⁡ x { f 0 ( x ) + v T ( A x − b ) }        v = α ( A x ~ − b ) g ( α ( A x ~ − b ) ) = inf ⁡ x { f 0 ( x ) + α ( A x ~ − b ) T ( A x ~ − b ) } = f 0 ( x ~ ) + α ∣ ∣ A x ~ − b ∣ ∣ 2 2    f 0 ( x ∗ ) = P ∗ = d ∗ ≥ g ( α ( A x ~ − b ) ) = f 0 ( x ~ ) + α ∣ ∣ A x ~ − b ∣ ∣ 2 2 ≥ f 0 ( x ~ ) 当 α = 0 时 , arg max ⁡ f 0 ( x ) 当 α → + ∞ 时 , f ( x ∗ ) = f ( x ~ ) \Rightarrow L(x,v)=f_0(x)+v^T(Ax-b)\\\Rightarrow g(v)=\inf_x\{f_0(x)+v^T(Ax-b)\}\;\;\;v=\alpha(A\tilde x-b)\\g(\alpha(A\tilde x-b))=\inf_x\{f_0(x)+\alpha(A\tilde x-b)^T(A\tilde x-b)\}\\=f_0(\tilde x)+\alpha||A\tilde x-b||^2_2\\\;\\f_0(x^*)=P^*=d^*\ge g(\alpha(A\tilde x-b))=f_0(\tilde x)+\alpha||A\tilde x-b||_2^2\ge f_0(\tilde x)\\当\alpha=0时,\argmax f_0(x)\\当\alpha\rightarrow+\infty时,f(x^*)=f(\tilde x) L(x,v)=f0(x)+vT(Axb)g(v)=xinf{ f

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值