贴一下汇总贴:论文阅读记录
论文链接:《A Simple and Effective Model for Answering Multi-span Questions》
一、摘要
阅读理解(RC)模型通常将其输出空间限制为来自输入的所有单个连续范围的集合,以减轻学习问题并避免需要模型来显式生成文本。但是,将答案强制为单个跨度可能会受到限制,并且一些最近的数据集还包含多跨度问题,即其答案是文本中一组非连续跨度的问题。自然,返回单个跨度的模型无法回答这些问题。在这项工作中,我们提出了一个简单的体系结构,用于通过将任务转换为序列标记问题来回答多跨度问题,即为每个输入令牌预测是否应该将其作为输出的一部分。我们的模型在将DROP和Quoref的跨度提取问题上的性能提高了9.9和5。
二、结论
在这项工作中,我们将回答多跨度问题的任务转换为一个序列标记问题,并给出了一个简单的相应的多跨度体系结构。我们表明,用我们的多跨度体系结构替换标准的单跨度体系结构可以显著提高多跨度问题的结果,而不会损害单跨度问题的性能,从而在QUOREF上获得最先进的结果。此外,将我们的多跨架构集成到现有模型中进一步提高了DROP的性能,这从DROP排行榜上的领先模型中可以明显看出。代码:github。
三、模型
- Span Extraction as Sequence Tagging
- Decoding Spans from a Tagging