贴一下汇总贴:论文阅读记录
论文链接:《Multi-hop Question Answering via Reasoning Chains》
一、摘要
多跳问题回答需要模型从文本的不同部分收集信息以回答问题。当前大多数方法都学会了使用神经网络以端对端的方式解决这一任务,而无需保持对推理过程的明确表示。我们提出了一种提取文本上离散推理链的方法,该方法由一系列导致答案的句子组成。然后,我们将提取的链馈送到基于BERT的QA模型中,以进行最终答案预测。至关重要的是,我们不依赖于带有金标的链或“支持事实”:在训练时,我们使用基于命名实体识别和共指解析的启发式方法来推导伪金推理链。在测试时,我们也不依赖这些注释,因为我们的模型学会了仅从原始文本中提取链。我们在两个最近提出的大型多跳问题回答数据集WikiHop和HotpotQA上测试了我们的方法,并在WikiHop上获得了最先进的性能,在HotpotQA上获得了出色的性能。我们的分析显示了对于高性能至关重要的链的属性:特别是,顺序建模建模非常重要,以上下文感知方式处理每个候选句子也是如此。此外,人类评估表明,我们提取的链条使人类能够高度自信地给出答案,表明这些是该任务的强有力的中间抽象。我们的分析显示了对于高性能至关重要的链的属性:尤其是顺序建模提取非常重要,以上下文感知方式处理每个候选句子也是如此。此外,人类评估表明,我们提取的链条使人类能够高度自信地给出答案,表明这些是该任务的强有力的中间抽象。我们的分析显示了对于高性能至关重要的链的属性:特别是,顺序建模建模非常重要,以上下文感知方式处理每个候选句子也是如此。此外,人类评估表明,我们提取的链条使人类能够高度自信地给出答案,表明这些是该任务的强有力的中间抽象。
二、结论
在这项工作中,我们学习提取推理链来回答多跳推理问题。实验结果表明,该链和人类标注一样有