【论文泛读114】通过数据增强和基本原理训练的跨语言句子选择

本文介绍了一种在低资源环境下通过数据增强和负采样技术进行跨语言句子选择的方法。该方法利用SMT的词对齐进行基本原理训练,表现优于多种先进基线。研究证实其在处理低资源和减少中心性方面有效,适用于查询聚焦的摘要和开放领域问题回答等下游NLP任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《Cross-language Sentence Selection via Data Augmentation and Rationale Training》

一、摘要

本文提出了一种在低资源环境中进行跨语言句子选择的方法。它在嘈杂的平行句子数据上使用数据增强和负采样技术来直接学习基于跨语言嵌入的查询相关性模型。结果表明,这种方法的性能与在相同并行数据上训练的多个最先进的机器翻译 + 单语检索系统一样好或更好。此外,当应用基本原理训练次要目标来鼓励模型匹配来自基于短语的统计机器翻译模型的词对齐提示时,在三种语言对(英语-索马里语、英语-斯瓦希里语和英语-他加禄语)中可以看到一致的改进在各种最先进的基线上。

二、结论

在这项工作中,我们提出了一个基于监督跨语言嵌入的查询相关性模型,SECLR-RT,并应用了一个基本的训练目标来进一步提高模型的性能。在跨语言句子选择任务中,最终的SECLR-RT模型优于一系列基线方法。对数据消融和中心性的研究进一步表明了我们的模型在处理低资源设置和减少中心结构方面的有效性。在未来的工作中,我们希望将我们的句子级查询相关性方法应用到下游NLP任务中,例如查询聚焦的摘要和开放领域的问题回答。

三、方法

  • 首先
    将机器翻译的平行句子语料库转换成具有二元相关性判断的跨语言查询句子对,用于训练我们的SECLR模型。
  • SECLR模型
    使用SMT中的单词对齐完成基本原理训练方法。

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值