【论文泛读116】汉语会话语音中省略代词恢复与会话语篇解析的联合模型

本文介绍了一种名为DiscProReco的神经模型,专门用于汉语会话语音中的删除代词恢复和会话话语解析。通过联合学习,模型在两项任务上均表现出色,尤其在新构建的SPDPR数据集上优于现有基线。DiscProReco利用GCN对话语标记进行编码和关系增强,提升了会话理解的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《A Joint Model for Dropped Pronoun Recovery and Conversational Discourse Parsing in Chinese Conversational Speech》

一、摘要

在本文中,我们提出了一种用于汉语会话语音中联合删除代词恢复 (DPR) 和会话话语解析 (CDP) 的神经模型。我们表明 DPR 和 CDP 密切相关,联合模型对这两个任务都有好处。我们将我们的模型称为 DiscProReco,它首先在与有向图卷积网络 (GCN) 的对话中对每个话语中的标记进行编码。然后聚合话语的标记状态以生成每个话语的单个状态。然后将话语状态送入双仿射分类器以构建会话话语图。然后将第二个(多关系)GCN 应用于话语状态,以生成话语的话语关系增强表示,然后将它们与每个话语中的标记状态融合在一起,作为丢弃的代词恢复层的输入。联合模型在一个新的结构解析增强删除代词恢复 (SPDPR) 数据集上进行训练和评估,我们用两种类型的信息进行了注释。SPDPR 数据集和其他基准的实验结果表明,DiscProReco 显着优于这两项任务的最先进基线。

二、结论

本文认为,代词脱落的恢复和会话话语分析是两个密切相关的任务。为了让他们相互受益,我们设计了一个新的框架,叫做DiscProReco,来同时处理这两个任务。该框架在联合学习范例中训练,并且用于两个任务的参数被联合优化。为了便于研究这个问题,我们创建了一个名为SPDPR的大规模数据集,其中包含了对被删除的代词和话语关系的注释。实验结果表明,DiscProReco在两个任务上都优于所有基线。

三、model

DiscProReco的概述:
在这里插入图片描述
语音中省略代词的恢复~~讲道理,并不是感兴趣的方向,不过确实是一个比较小的创新点,感觉可以用于文档的分析中去,在NLU中能够产生一定的联系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值