【论文泛读153】Coarse-to-Careful:为开放域常识问答寻求语义相关知识

该博客介绍了《Coarse-to-Careful: Seeking Semantic-related Knowledge for Open-domain Commonsense Question Answering》论文,提出了一种名为SEEK-QA的框架,该框架通过从粗到细的方式控制知识注入以解决开放域常识问答中的噪声和误导性信息问题。论文中提到的策略包括使用SONAR策略过滤不相关知识,并通过SKETCH模块以问题的语义来精细化处理和融合结构化知识,从而提高答案的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《Coarse-to-Careful: Seeking Semantic-related Knowledge for Open-domain Commonsense Question Answering》

一、摘要

利用外部知识帮助机器回答需要背景常识的问题很普遍,这面临着无限的知识会传输嘈杂和误导性信息的问题。针对引入相关知识的问题,我们提出了一种语义驱动的知识感知 QA 框架,该框架以从粗到细的方式控制知识注入。我们设计了一种裁剪策略,在知识提取阶段对问题的粗略语义的监控下过滤提取的知识。并且我们开发了一个语义感知的知识获取模块,该模块根据问题的仔细语义以分层方式处理结构化知识信息并融合适当的知识。

二、结论

在这项工作中,我们提出了语义驱动的知识感知问答(SEEK-QA)框架,它可以按照从粗到细的方式操纵外部结构化知识的注入。实验结果证明了该方法的有效性。

三、model

SEEK-QA框架:
在这里插入图片描述
包含两个阶段:

  • a)检索:使用SONAR策略过滤不相关的知识三元组。
  • b)回答:利用装有SKETCH模块的QA模型为给定问题选择正确答案。

最主要的三个模块:

  • Contextual Encoding
  • Knowledge Module
  • Answer Scoring
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值