
机器学习
booooooty
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
吴恩达机器学习第一周
机器学习问题主要可以分为:监督学习(supervised) 和 非监督学习(unsupervised)监督学习:回归问题: 预测连续值输出分类问题:预测离散值输出数据集给出正确答案(有标签,有y值)非监督学习:聚类算法, 数据集无明确答案(没有标签,没有y值),由算法自动分成簇类。 假设函数(hypothesis):用来拟合数据集的函数,像线性回归中的直线方程。...原创 2019-01-27 15:02:40 · 382 阅读 · 0 评论 -
吴恩达机器学习第二周(编程及python实现)
主要内容:多变量下的线性回归,特征缩放/均值归一化,正规方程,常用的matlab/octave函数语句多变量的线性回归:和单变量的其实差不多,在矩阵的运算下是完全一样的。主要是对变量的一些定义,如下标表示第几个特征量,上标表示训练集中的第几个样本。吴恩达机器学习第一周特征缩放/均值归一化:由于不同的特征量会有不同的取值范围,如果不加以调整,会导致梯度下降的过程中反复振荡,效率过...原创 2019-01-28 20:16:44 · 499 阅读 · 0 评论 -
吴恩达机器学习第三周(含编程作业及python实现)
主要内容:逻辑回归:分类问题。即训练集中的标签(y值)属于一个有穷集,如{0,1},{0,...,10}。具体例子有:判断病人是否患有癌症(2种类别);手写数字识别(10种类别);判断学生是否挂科等等。假设函数:在原先线性回归函数中的 θ*X 上,再套上一层激励函数。激励函数是神经网络中的一种函数,通常是非线性的。在这里的机器学习问题上,其表示形式为 ,其中 ,(这里的θ为列向量,...原创 2019-02-03 15:12:35 · 2280 阅读 · 0 评论