1 引言
本文介绍一种基于NHC估计IMU与陆地车间安装角的经典方法。在使用NHC时一定要考虑IMU与陆地车间的安装角问题,不然会适得其反。
注:为便于理解基于NHC估计IMU与陆地车间安装角的原理,本文不考虑ODO系数误差(即,比力因子)
2 原理
陆地车在不发生跳跃和侧滑时,其垂直于前进方向的后轮速度近似为零,且陆地车的前向速度近似等于轮速计的速度。在实际路测时,车体系和IMU坐标系不完全重合,即陆地车坐标系和IMU坐标系间存在安装角,所以在使用非完整约束(NHC)时需要考虑陆地车坐标系和IMU坐标系间的安装角。直接量取此安装角不太容易,所以这里介绍一种常规的计陆地车坐标系和IMU坐标系间安装角的方法。
3 结果
通过在严恭敏老师的PSINS平台中仿真,对比了IMU与车体存在安装角的情况下,GNSS/INS组合、未考虑安装角的GNSS/INS/NHC/ODO组合 和 估计安装角的GNSS/INS/NHC/ODO组合的姿态精度。
注:本仿真示例中,航向安装角15°,俯仰安装角5°,横滚安装角0°
3.1 仿真轨迹:
3.2 GNSS/INS组合姿态误差:
3.3 未考虑安装角的GNSS/INS/NHC/ODO组合姿态误差
3.4 估计安装角的GNSS/INS/NHC/ODO组合姿态误差
从姿态误差中可以看出,(1)GNSS/INS组合的航向误差大概15°,俯仰误差大概5°,这是因为GNSS/INS组合输出的姿态为IMU到n系的姿态,与车体系到n系的姿态差一个安装角;(2)未考虑安装角的GNSS/INS/NHC/ODO组合姿态后面有点发散,这是因为使用了NHC但没有考虑安装角导致的;(3)估计安装角的GNSS/INS/NHC/ODO组合的姿态精度最好,航向和俯仰的安装角估计结果正常,但是细心的同学应该可以发现,横滚角有1°左右的误差,这是因为也对横滚安装角进行了估计,此方法横滚安装角不可观,所以横滚安装角估计的结果有1°左右的误差,最终导致横滚角也有1°左右的误差,所以在使用此方法时可以不对横滚安装角进行估计,可以解决此问题。
注: 程序已挂 “xian鱼”,可搜索 “油菜花VS蔓菁花” 拍!
4 参考
[1] Wu Yuanxin. Versatile Land Navigation Using Inertial Sensors and Odometry Self-calibration, In-motion Alignment and Positioning.