独热编码——文本数据

本文介绍了机器学习中如何使用独热编码处理文本数据,包括独热编码的概念、步骤以及两种实现方法:pandas的get_dummies和sklearn的OneHotEncoder。独热编码虽简单易懂但可能占用大量内存,尤其在大数据场景下需注意优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【说明】文章内容来《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。

1、简介

        机器学习算法往往无法直接处理文本数据,需要把文本数据转换为数值型数据,独热编码就是一种解决方法。独热(one-hot)编码又称为一位有效编码。独热编码将文本中的单词编号,构建字典结构的词汇表。其中,key是单词,value是单词的索引。词汇表有n个单词,构成n个词向量。例如,某个单词在词汇序列中的位置为k,对应的词向量的第k个位置为1,其他位置都为0。独热编码保证了每一个取值只会使得一种状态处于激活态,也就是说多种状态中只有一个状态位为1,其他状态位都是0.

独热编码具有操作简单、容易理解的优势。但是独热编码完全割裂了词与词之间的联系;而且当数据量较大时,每个向量的长度过大,会占据大量内存。

2、独热编码的步骤

独热编码的步骤:

(1)确定要编码的对象。例如[“中国”,“美国”,“英国”,“中国”]。

(2)确定分类变量。例如,中国、美国、英国共3个类别。

(3)特征的整数编码。例如中国为0,美国为1,英国为2.

独热编码为

中国美国英国
中国100
美国010
英国001
中国100

3、独热编码实现

(1)方法一:pandas的get_dummies方法,格式如下:

pandas.get_dummies(data, sparse = False)

【参数说明】

  • data:数组类型为Series或DataFrame
  • spare:是否是稀疏矩阵

示例:

import pandas as pd
s = pd.Series(list('abcd'))
print(s)
s1 = pd.get_dummies(s, sparse = True)
print(s1)

【运行结果】

(2)方法二:采用sklearn 的preprocessing模块

示例:

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])
ans1 = enc.transform([[0,1,3]])
ans2 = enc.transform([[0,1,3]]).toarray()#toarray()方法返回一个Object数组,它就是Object不是其他类
print(ans1)
print(ans2)
#第一个特征(即为第一列)为[0,1,0,1],其中三类特征值[0,1],因此One-Hot Code可将[0,1]表示为:[10,01]
#第二个特征(即为第二列)为[0,1,2,0],有三种值[0,1,2]:采用三个编码:[100,010,001]
#第三个特征[3,0,1,2]表示为[1000,0100,0010,0001]
#0作为第一特征编码为10,1作为第二特征编码为010,3作为第三特征编码为0001

### 独热编码的概念 独热编码是一种用于将分类变量转换为机器可读形式的技术,它通过创建一个二进制向量来表示每个类别值[^1]。具体来说,在独热编码中,每一个类别都会被映射到一个独特的二进制向量位置上,其中只有一个位设置为1,其余均为0。这种方法能够有效地让计算机识别并区分不同的类别。 例如,假设有一个颜色属性包含三个可能的取值:“红色”,“绿色”和“蓝色”。那么,“红色”的独热编码可能是 `[1, 0, 0]`;“绿色”则对应于 `[0, 1, 0]`;而“蓝色”会是 `[0, 0, 1]`[^4]。 ### 独热编码的作用 独热编码的主要作用在于帮助机器学习模型更好地处理非数值型的数据。许多机器学习算法无法直接接受字符串或其他类型的非数值输入作为训练数据的一部分。因此,采用诸如独热编码这样的技术可以使得这些算法得以正常运行,并提高预测性能[^3]。 此外,由于经过独热编码后的特征矩阵具有稀疏性特点,这也有助于减少计算复杂度以及存储需求,特别是在面对高维度空间时尤为明显[^2]。 ### 应用场景 在实际应用当中,独热编码广泛应用于各种领域: - **自然语言处理**:当涉及到文本分析任务时,比如情感分类或者主题建模等情况下,常常需要用到单词级别的表达方式——即把文档中的各个词汇转化为相应的独热码序列以便进一步加工处理。 - **推荐系统构建**:为了捕捉用户的偏好模式,通常需要对物品的各种特性进行量化描述。此时利用独热编码可以把原本定性的商品标签转变为定量指标供后续运算使用。 - **金融风控评估**:银行信贷审核过程中涉及大量客户个人信息字段(如职业类型),借助独热编码手段可以使这类离散型变量融入整体风险评分体系之中。 ```python import pandas as pd from sklearn.preprocessing import OneHotEncoder data = {'color': ['red', 'green', 'blue']} df = pd.DataFrame(data) encoder = OneHotEncoder() encoded_data = encoder.fit_transform(df[['color']]).toarray() print(encoded_data) ``` 上述代码展示了如何使用Python库Pandas与Scikit-Learn完成简单的独热编码操作过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值