(十四)Kubernetes集群环境搭建 -- 集群安装

本文介绍了如何在阿里云环境下准备Kubernetes 1.17.4集群所需的镜像,包括从阿里云仓库下载并标记镜像,以及如何在master节点上初始化集群并加入node节点。过程包括使用`kubeadm`进行配置和验证节点状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 准备集群镜像
    参考博客
    在安装kubernetes集群之前,必须提前准备好所需的镜像,所需镜像可以通过以下命令查看
kubeadm config images list

在这里插入图片描述
下载镜像

#此镜像在kubernets的仓库中,由于网络原因,无法连接,下面提供一种替代方案
images=(
    kube-apiserver:v1.17.4
    kube-controller-manager:v1.17.4
    kube-scheduler:v1.17.4
    kube-proxy:v1.17.4
    pause:3.1
    etcd:3.4.3-0
    coredns:1.6.5
)

for imageName in ${images[@]} ; do
    docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/$imageName
    docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/$imageName k8s.gcr.io/$imageName
    docker rmi registry.cn-hangzhou.aliyuncs.com/google_containers/$imageName
done

拉取镜像图例
在这里插入图片描述
查看镜像

docker images

在这里插入图片描述

  1. 集群初始化
    下面开始对集群进行初始化,并将节点node加入到集群中
    下面的操作只需要在master节点上执行即可, 只需要修改apiserver-advertise-address为master的ip即可
kubeadm init --kubernetes-version=v1.17.4 --pod-network-cidr=10.244.0.0/16 --service-cidr=10.96.0.0/12 --apiserver-advertise-address=192.168.247.100

在这里插入图片描述

#按照上面提示执行
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

在这里插入图片描述
此时master下面是没有node节点的:
在这里插入图片描述

下面的操作在node节点上执行:

#将node节点加入到master控制中, 在node1和node2中执行下面操作
kubeadm join 192.168.247.100:6443 --token my24rq.fv7eq2ckezbq880u \
    --discovery-token-ca-cert-hash sha256:386b0ae5294482295c8593afd9a721e58c7a1ff0ecebeabbc6a3f902113a5d4b

在master上查看节点:
在这里插入图片描述
这时候是没有安装网络的,上图为NotReady,表示节点之间不可以通信。

》》》博主长期更新学习心得,推荐点赞关注!!!
》》》若有错误之处,请在评论区留言,谢谢!!!

### 芯片的概念与计算方法 芯片(Junction Temperature, Tj)是指芯片内部发热区域的度,通常是芯片内最热的部分[^3]。由于芯片在工作时会产生热量,因此通常高于芯片表面度(Case Temperature, Tc)和环境度(Ambient Temperature, Ta)。为了确保芯片的可靠性和使用寿命,设计人员需要掌握计算方法。 #### 计算公式 可以通过以下公式进行计算: - **公式 1**: \[ T_j = T_a + P \cdot R_{ja} \] 其中: - \(T_j\):(单位:°C) - \(T_a\):环境度(单位:°C) - \(P\):芯片功耗(单位:W) - \(R_{ja}\):从到环境的热阻(单位:°C/W) - **公式 2**: \[ T_j = T_c + P \cdot R_{jc} \] 其中: - \(T_c\):芯片表面度(单位:°C) - \(R_{jc}\):从芯片表面的热阻(单位:°C/W) 上述公式适用于不同的测量条件。如果可以直接测量芯片表面度,则使用公式 2 更为准确;如果只能获取环境度,则使用公式 1 进行估算[^5]。 #### 度估算方法 在实际应用中,可以通过以下方法对芯片进行估算: 1. **热成像仪法**: 使用热成像仪测量芯片表面度 \(T_c\),并根据芯片手册中的热阻参数 \(R_{jc}\) 计算 \(T_j\)。由于到壳的热阻较大,和壳之间的差异通常较小,一般可将壳加上 10°C 左右作为的近似值[^4]。 2. **功率损耗法**: 根据芯片的实际功耗 \(P\) 和热阻参数 \(R_{ja}\) 或 \(R_{jc}\),通过公式计算。需要注意的是,实际功耗应包括驱动功率、开关损耗和导通损耗等,且通常远小于芯片手册中给出的最大耗散功率。 3. **热仿真工具**: 使用热仿真工具(如 Flotherm)可以更精确地预测芯片分布,特别是在复杂散热环境中。这种方法能够考虑更多实际因素,如气流、材料特性等[^1]。 #### 示例代码 以下是一个简单的 Python 示例,用于根据公式计算芯片: ```python def calculate_junction_temperature(Ta, P, Rja): """ 计算芯片 :param Ta: 环境度 (°C) :param P: 芯片功耗 (W) :param Rja: 到环境的热阻 (°C/W) :return: (°C) """ Tj = Ta + P * Rja return Tj # 示例参数 Ta = 25 # 环境度 (°C) P = 2.5 # 功耗 (W) Rja = 50 # 到环境的热阻 (°C/W) # 计算 Tj = calculate_junction_temperature(Ta, P, Rja) print(f"芯片为: {Tj} °C") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值