Transform论文阅读之Attention Is All You Need(一)and Vit

摘要:

这篇论文的摘要介绍了一种名为Transformer的新型神经网络架构,该架构完全基于自注意力机制,用于解决序列转换任务。Transformer在机器翻译任务中取得了领先的性能,并且相比基于循环或卷积神经网络的传统架构,Transformer的训练速度显著更快。此外,还提到了Transformer在处理其他输入输出模态(如图像、音频和视频)方面的潜在应用,并强调了其在减少顺序计算方面的优势。总的来说,摘要突出了Transformer作为一种基于注意力机制的模型架构,其在序列转换任务中的性能优势和潜在应用前景。

自注意力机制

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值