自监督学习在合成孔径声呐目标识别中的应用之论文阅读

自监督学习在合成孔径声呐目标识别中的应用
BW Sheffield
美国巴拿马城海军水面作战中心

1 引言
在自主水下航行器(AUVs)中应用计算机视觉面临着独特的挑战,因为海洋环境往往条件不可预测且极为严苛。传统计算机视觉研究主要依赖光学相机成像,而在光照不足、悬浮沉积物及水体浑浊的水下环境中难以适用。因此,声呐成像,尤其是其衍生技术——合成孔径声呐(SAS),成为水下成像的首选。搭载SAS的AUV能够扫描海底生成高分辨率图像,其细节表现远超其他类型的声呐。然而,SAS图像虽然细节丰富,但数据量巨大,给标注工作带来了极大挑战,而标注又是训练深度神经网络(DNN)不可或缺的一步。

与传统机器学习方法相比,DNN因其能够自主从数据中学习特征而受到广泛关注,无需专家手工设计特征。然而,DNN的显著限制在于其对大规模标注数据和强大计算资源的依赖。在SAS领域,不仅标注数据稀缺,且获取难度远高于传统相机图像。

近年来,随着计算能力和数据量的增长,自监督学习(SSL)逐渐兴起。SSL无需标签即可让模型从数据中学习特征,因而为解决SAS数据标注不足问题提供了潜在途径。本研究旨在评估两种主流SSL算法——MoCov2 [1] 和 BYOL [2],与经典监督学习模型ResNet18 [3]在二分类SAS图像识别任务上的表现(如图1所示)。SSL模型在真实世界SAS数据上进行预训练,以学习有用特征,并与监督学习基准进行对比。
在这里插入图片描述

2 相关工作

近年来,自监督学习(SSL)在许多领域迅速发展,尤其是在遥感领域 [4–14]。尽管 SSL 在各个领域的应用已取得显著进展,但在合成孔径声呐(SAS)上的研究仍相对缺乏。
2022 年,Preciado‑Grijalva 等人 [15] 在前视声呐(FLS)应用中验证了 SSL 的潜力,表明在少样本迁移学习设置下,SSL 预训练可实现与监督预训练相当的分类性能。在无监督和半监督学习领域,也

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值