windows11+GPU1060安装强化学习环境之pytorch

这里大家看一个视频系列,讲得非常详细,链接在此:https://www.bilibili.com/video/BV1S5411X7FY?p=28&vd_source=3be739b673e1151850f4b8060ac78e1a
这里主要是说我遇到的问题以及解决办法。
首先,我的笔记本是有显卡的,只不过算力为6,较低,但是已经差不多了,主要是想在windows上操作,嗯,还有就是在服务器上很慢,只是两个情况都试了,谁最快完成就选择谁。
我是之前把我的独立显卡禁用了,因为不是英伟达显卡。自己笔记本有两个显卡,害怕会产生冲突。一切按视频讲解一番操作,但是在最后验证的时候是false,仔细观察下载的包计划,是cpu版本,阅读b站评论区网友的回答,得知没有gpu版本的所以选择了cpu版本下载,所以我降低了pytorch的版本,选择了11.7的版本,大家可以到这个链接上去看自己cuda版本对应的pytorch在你的下载网址到底有没有,因为我的下载地址是清华镜像,所以是这个链接https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
除此以外,我还遇到的一个问题就是cuda驱动的重新安装,这个百度可以搜索到教程,给出我参考的链接https://blog.csdn.net/qq_44703886/article/details/112859392?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170555638116800215084070%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=170555638116800215084070&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allbaidu_landing_v2~default-5-112859392-null-null.142v99pc_search_result_base6&utm_term=nvidia%E6%98%BE%E5%8D%A1%E9%A9%B1%E5%8A%A8%E5%AE%89%E8%A3%85%E6%95%99%E7%A8%8B&spm=1018.2226.3001.4187

### 如何在 Windows 上搭建强化学习开发环境 #### 选择合适的 Python 和 Gym 版本 为了确保兼容性和稳定性,建议使用特定版本的 Python 和 Gym。创建一个新的 Conda 环境安装所需的依赖项可以有效管理这些软件包。 ```bash conda create -n rl_env python=3.7 conda activate rl_env ``` 这一步骤有助于隔离不同项目的依赖关系,从而减少冲突的可能性[^3]。 #### 安装必要的库和工具 激活新创建的 Conda 环境后,接下来需要安装 PyTorch 和 Gym 库: ```bash pip install torch==1.10.0 torchvision torchaudio pip install gym==0.25.1 ``` 通过上述命令,可以在环境安装指定版本的 PyTorch 及其扩展模块以及 Gym 库,为后续实验做好准备。 对于那些希望利用 GPU 加速训练过程的人来说,在安装 PyTorch 时可以选择带有 CUDA 支持的二进制文件。具体操作可以根据官方文档中的指导完成。 #### 配置 Windows 设置 (针对 WSL 用户) 如果是在较新的 Windows 系统上运行,则可以通过 Windows Subsystem for Linux (WSL) 来获得更好的性能体验。确保已更新至最新版 Windows 并启用了 WSL 功能[^2]。 - 打开 PowerShell 或者管理员权限下的 CMD; - 输入 `wsl --install` 命令自动下载并安装默认发行版(通常是 Ubuntu); - 启动刚安装好的 Linux 发行版,并按照提示设置用户名密码等基本信息; 这样就可以在一个接近原生 Linux 的环境下工作了,同时也能够访问主机上的资源和服务。 #### 测试安装是否成功 最后,编写一段简单的代码来验证 Gym 是否正常工作: ```python import gym env = gym.make('CartPole-v1') observation = env.reset() for _ in range(1000): action = env.action_space.sample() # your agent here (this takes random actions) observation, reward, done, info = env.step(action) if done: break env.close() ``` 此脚本会启动 CartPole 游戏模拟器,并让杆子尽可能长时间保持平衡状态。虽然这里采取的是随机策略,但在实际应用中应该替换为自己设计的学习算法[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值