题目描述:
题意:
用T串去匹配S串的任意子序列,如果匹配成功,将S种相应位置染色,可重复染色,若最后S
串中所有位置均被染色,输出“Yes”,否则,输出“No”。
思路:
按照判断子序列的思路匹配,如果Si和Tj匹配(Tj前面的均已被匹配),记录下j的位置,代表Si所能
匹配到的最远距离,若不匹配,找Si前面最近的和Si字符相同的位置,用其匹配的最远距离给Si赋值,这
样一趟下来我们可以求出S每个字符在T中匹配到的最远距离,即S中小于等于i的字符均已经被匹配,且最
后一个字符匹配到T的某个位置,到这里,如果我们能倒序求出S中每个字符匹配的最远距离(针对原串末
尾而言),然后将这两个最远距离做小比较即可判断该字符是否存在在一个和T匹配的子序列中。
代码实现:
#include<iostream>
#include<cstring>
#include<cmath>
#include<stack>
#include<algorithm>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int N=2e5+100;
/* // 判断t是否为s的子序列
bool isSubsequence(string s, string t) {
int pos_t = 0;
for(int i = 0 ; i < s.size() && pos_t < t.size(); i ++) {
if(t[pos_t] == s[i]){
pos_t++;
}
}
return pos_t==t.size();
}*/
char s[N],t[N];
int Left[N],Right[N],pre[N],len1,len2;
void judge(char *s,char *t,int *arr){
memset(pre,0,sizeof(pre));
for(int i=1,p=1;i<=len1;i++){
arr[i]=pre[s[i]];
if(s[i]==t[p]&&p<=len2){
arr[i]=p++;
}
pre[s[i]]=arr[i];
}
}
int main() {
bool flag=0;
while(scanf("%s",s+1)!=EOF){
scanf("%s",t+1);
flag=1;
memset(Left,0,sizeof(Left));
memset(Right,0,sizeof(Right));
len1=strlen(s+1);
len2=strlen(t+1);
judge(s,t,Left);
reverse(s+1,s+1+len1);
reverse(t+1,t+1+len2);
judge(s,t,Right);
reverse(s+1,s+1+len1);
reverse(t+1,t+1+len2);
for(int i=1;i<=len1;i++){
if(Left[i]==0||Right[i]==0||Left[i]<len2+1-Right[len1+1-i]){
flag=0;//Right的转换别弄错
break;
}
}
if(flag)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}
THE END;