一、动因篇
卷积与池化的意义
卷积神经网络(Convolutional Neural Network,CNN)之所以在图像处理中表现突出,源于两个关键操作:卷积(Convolution)与池化(Pooling)。卷积操作能够捕获图像的空间特征,如边缘、纹理和形状等;池化则降低了特征维度,并保留最重要的信息,有效减少了计算量和过拟合风险。两者配合,增强了网络提取特征和泛化的能力。
二、模型篇
为什么卷积核尺寸通常为奇数?
卷积核一般设计为奇数大小,如3x3、5x5。这是因为奇数尺寸卷积核能明确指定中心像素,便于对称地覆盖特征图,确保卷积操作输出尺寸的对齐和特征定位准确。
卷积操作的特点
卷积操作具有三个重要特点:
- 局部连接:卷积核仅与输入的局部区域相连接,显著降低了网络的参数量。
- 权值共享:卷积核参数在空间维度上共享,减少了训练难度。
- 平移不变性:卷积操作对输入的平移具有较强的鲁棒性,能够识别出不同位置的相似特征。
为什么需要Padding?
Padding(填充)能够维持输出与输入尺寸一致,避免因多次卷积导致特征尺寸剧烈减小。适当的Padding能够帮助网络更好地捕捉边缘信息,改善模型表现。