卷积神经网络(CNN)详解

一、动因篇

卷积与池化的意义

卷积神经网络(Convolutional Neural Network,CNN)之所以在图像处理中表现突出,源于两个关键操作:卷积(Convolution)与池化(Pooling)。卷积操作能够捕获图像的空间特征,如边缘、纹理和形状等;池化则降低了特征维度,并保留最重要的信息,有效减少了计算量和过拟合风险。两者配合,增强了网络提取特征和泛化的能力。

二、模型篇

为什么卷积核尺寸通常为奇数?

卷积核一般设计为奇数大小,如3x3、5x5。这是因为奇数尺寸卷积核能明确指定中心像素,便于对称地覆盖特征图,确保卷积操作输出尺寸的对齐和特征定位准确。

卷积操作的特点

卷积操作具有三个重要特点:

  • 局部连接:卷积核仅与输入的局部区域相连接,显著降低了网络的参数量。
  • 权值共享:卷积核参数在空间维度上共享,减少了训练难度。
  • 平移不变性:卷积操作对输入的平移具有较强的鲁棒性,能够识别出不同位置的相似特征。
为什么需要Padding?

Padding(填充)能够维持输出与输入尺寸一致,避免因多次卷积导致特征尺寸剧烈减小。适当的Padding能够帮助网络更好地捕捉边缘信息,改善模型表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值