RAG-大模型课程《李宏毅 2025》作业1笔记

原视频链接:HW1 - Retrieval Augmented Generation with Agentic System_哔哩哔哩_bilibili

1、什么是RAG

2、为什么用RAG

3、什么是agent系统

1、什么是RAG
  • Retrieval - augmented generation (RAG) ·检索增强生成
  • RAG是一种让大语言模型(LLMs)利用外部知识回答查询的方法,在一种简单的RAG实现中,用户的问题会首先被输入到“检索系统”或“已知知识库”中以收集相关信息。

2、为什么要用RAG
  • 可解决大语言模型知识截止(模型预训练的数据有截止时间)
  • 直接训练模型成本高(RAG不需要训练模型)
  • 提升答案可靠性(比如企业内部文库)

3、作业中的agent

大语言模型,作为一个个“角色”配合完成复杂任务的框架

Agent目前没有统一agent定义,可以查看上篇内容

例子:

  • 用户问题:美国独立战争第一枪在哪里打响的?
  • maneger:决定把问题(如果有RAG ,则与RAG信息一起) 传给哪个“分类专家”——从科学、历史、数学中,选择了历史专家。
  • 事实检测:通过网络搜索,检查历史专家答题结果,确认回答正确。

作业代码链接:ML2025 Homework 1 | Kaggle

<think>嗯,用户问的是如何下载facebook/rag-token-nq模型。首先,我需要确认这个模型的具体来源和下载方式。RAG模型是Facebook Research(现在叫Meta AI)开源的,所以应该是在Hugging Face的模型库上。用户可能已经知道Hugging Face,但不确定具体步骤。 接下来,我应该考虑不同的下载方法。第一种是使用Hugging Face的Transformers库,这是最常见的方式,通过from_pretrained方法直接加载。但用户可能需要先安装必要的库,比如transformers和torch,所以需要提醒安装步骤。此外,模型可能比较大,下载需要时间,特别是如果网络环境不好,可能需要设置镜像源。 第二种方法是手动下载,用户可能在某些情况下无法直接通过代码下载,比如在受限的环境中,这时候需要指导他们去Hugging Face的网站,找到模型页面,手动下载文件,并指定本地路径加载。这里需要注意文件结构和路径是否正确。 第三种方法提到Git LFS,因为模型文件通常用Git LFS管理,所以如果用户想克隆仓库,需要安装Git LFS,并执行克隆命令。不过这对于普通用户来说可能有点复杂,所以可能需要分步骤说明。 然后,注意事项部分需要提醒模型的大小和硬件需求,特别是显存方面。RAG模型可能比较大,需要足够的资源来运行。另外,版本兼容性也是一个问题,不同版本的Transformers库可能有差异,建议用户更新到最新版本。 相关问题部分,用户可能对RAG模型的基础、应用场景、微调方法以及与其他模型比较感兴趣。这些问题的设置可以帮助用户更深入地了解RAG模型,而不仅仅是下载步骤。 最后,确保回答结构清晰,步骤明确,并且引用了相关的资料,比如Hugging Face的文档和Meta AI的资源,这样用户可以参考更多信息。同时,使用中文,避免任何Markdown格式,符合用户的要求。</think>以下是如何下载`facebook/rag-token-nq`模型的详细步骤: --- ### 方法一:通过Hugging Face Transformers库 1. **安装依赖库** ```bash pip install transformers torch ``` 2. **Python代码加载模型** ```python from transformers import RagTokenizer, RagTokenForGeneration # 加载模型和分词器 tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") # 若下载慢可设置镜像源(如清华源) # 在命令行执行:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple transformers ``` --- ### 方法二:手动下载(适用于无法直接联网的环境) 1. **访问Hugging Face模型页面** 打开链接:[facebook/rag-token-nq](https://huggingface.co/facebook/rag-token-nq) 点击"Files and versions"标签页,下载所有文件(含`pytorch_model.bin`、`config.json`等)[^1]。 2. **本地加载模型** ```python model = RagTokenForGeneration.from_pretrained("/path/to/downloaded_folder") ``` --- ### 方法三:使用Git LFS 1. **安装Git LFS** ```bash git lfs install ``` 2. **克隆仓库** ```bash git clone https://huggingface.co/facebook/rag-token-nq ``` --- ### 注意事项 1. **模型大小** RAG模型通常包含数GB参数,需确保存储空间充足[^2]。 2. **硬件要求** 需至少16GB显存(如NVIDIA V100/A100)以运行完整模型。 3. **版本兼容性** 建议使用`transformers>=4.17.0`(通过`pip install --upgrade transformers`更新)[^4]。 --- ### 相关问题 1. RAG模型与BERT、GPT的核心区别是什么? 2. 如何针对特定领域微调RAG模型?[^1] 3. RAG模型如何处理大模型的"幻觉"问题?[^3] 4. 有哪些开源的RAG框架可用?[^4] --- 引用[1]:这个例子展示了如何使用预训练的 RAG 模型来回答问题。实际应用中,你可能需要根据特定领域的知识库来微调模型。 RAG 的优势 。 引用[2]:答:RAG模型是一种结合了检索和生成两种方法的自然语言处理模型。与BERT、GPT等单一方法的模型相比,RAG模型既能利用检索方法从大量文本中快速查找相关信息,又能利用生成方法生成连贯、准确的回答。。 引用[3]:大模式的“幻觉”问题,是指模型在没有足够依据的情况下创造出错误或无意义的信息。。 引用[4]:开源的RAG框架有哪些,你比较了解?。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值