基于Seq2Seq的GRU时间序列预测Python程序

GRUSeq2Seq预测模型:Pytorch实现
文章介绍了基于Sequence-2-Sequence的GRU预测模型,特点包括单/多变量输入切换,单/多步预测,Pytorch架构,多种评估指标及数据从Excel读取。模型适用于序列到序列预测,如自然语言处理和语音识别,且提供了完整的可运行代码。

基于Sequence-2-Sequence,Encoder-Decoder(编码-解码)的GRU预测模型

特色:1、单变量,多变量输入,自由切换
           2、单步预测,多步预测,自动切换
           3、基于Pytorch架构
           4、多个评估指标(MAE,MSE,R2,MAPE等)
           5、数据从excel文件中读取,更换简单

           6、标准框架,数据分为训练集、验证集,测试集

 全部完整的代码,保证可以运行的代码看这里。

全部的,完整的代码在这里!!!

  !!!如果第一个链接打不开,请点击个人首页,查看我的个人介绍。

(搜索到的产品后,点头像,就能看到全部代码)

黑科技小土豆的博客_CSDN博客-深度学习,32单片机领域博主

281582249cb842268ab11507b0b88b6f.png

ae117a232d02482199196536731d3f75.png

1、背景简介: 基于Seq2Seq的GRU模型是一种序列到序列的预测模型,采用了编码器-解码器的结构。在编码器中,采用了GRU(Gated Recurrent Unit)结构来处理序列中的信息,而在解码器中则还是采用GRU模型来生成序列。这种模型可以应用于自然语言处理、语音识别等序列到序列的问题中。

2、优点总结:

  • 基于Seq2Seq的GRU模型可以处理序列到序列的预测问题,并且能够适应多种输入和输出数据类型;
  • GRU结构相比于LSTM结构,具有更少的参数和更快的训练速度,从而能够达到更高的模型效率;
  • 解码器中的教师强制技术可以提高模型的训练效率和准确性;
  • 应用于自然语言处理和语音识别等领域,可以处理长序列数据,并且输出结果质量较高。

train_ratio = 0.7  # 训练集比例
val_ratio = 0.15  # 验证集比例
test_ratio = 0.15  # 测试集比例
input_length = 48  # 输入数据长度,多步预测建议长,单步预测建议短
output_length = 1  # 输出数据长度,1为单步预测,1以上为多步预测 请注意,随着输出长度的增长,模型训练时间呈指数级增长
learning_rate = 0.1  # 学习率
estimators = 100  # 迭代次数
max_depth = 5  # 树模型的最大深度
interval_length = 2000  # 预测数据长度,最长不可以超过总数据条数
scalar = True  # 是否使用归一化
scalar_contain_labels = True  # 归一化过程是否包含目标值的历史数据
target_value = 'load'  # 需要预测的列名,可以在excel中查看

3b6eadb0210c4946bfd54e910aa2fa84.png

时间序列预测使用序列到序列(Seq2Seq)模型是一种常见的方法,尤其适用于多步预测问题。Seq2Seq模型通常由编码器和解码器组成,其中编码器将输入序列压缩为一个上下文向量,而解码器则基于该向量生成输出序列。 ### 编码器与解码器结构 在时间序列预测中,编码器通常是循环神经网络(RNN),如长短期记忆网络(LSTM)或门控循环单元(GRU)。这些结构能够处理变长的输入序列,并捕捉时间依赖关系。例如,一个具有LSTM层的编码器可以将历史时间序列数据转换为包含时间动态信息的隐藏状态[^3]。 解码器同样可以使用LSTM或GRU,它利用编码器的最终隐藏状态作为初始状态,并尝试生成未来的预测值。对于每一步的预测,解码器不仅考虑前一步的隐藏状态,还可能接收前一步的预测值作为输入。 ### 训练过程 训练过程中,通常采用教师强制(teacher forcing)策略,即在解码阶段,真实的历史目标值被用作当前步骤的输入而不是上一步骤的预测值。这种方法有助于加速收敛,但可能会导致模型在推理阶段对自身预测误差敏感。 ### 注意力机制 为了提升模型性能,可以在Seq2Seq架构中引入注意力机制。注意力机制允许解码器在生成每个输出时关注输入序列的不同部分,而非仅依赖于最后一个时间步的信息。这种机制显著提高了模型对长期依赖关系的处理能力[^4]。 ### 实现示例 以下是一个简化的PyTorch实现框架,展示如何构建一个基本的Seq2Seq模型用于时间序列预测: ```python import torch from torch import nn class Seq2SeqModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Seq2SeqModel, self).__init__() self.encoder = nn.LSTM(input_size, hidden_size, batch_first=True) self.decoder = nn.LSTM(hidden_size, output_size, batch_first=True) def forward(self, x, future=0): encoder_out, (h_n, c_n) = self.encoder(x) outputs = [] decoder_input = torch.zeros(x.shape[0], 1, self.decoder.input_size).to(x.device) for _ in range(future): decoder_output, (h_n, c_n) = self.decoder(decoder_input, (h_n, c_n)) outputs.append(decoder_output) # For teacher forcing, replace this line with the actual target value decoder_input = decoder_output return torch.cat(outputs, dim=1) # Example usage: model = Seq2SeqModel(input_size=1, hidden_size=50, output_size=1) ``` 在这个例子中,`input_size`代表特征的数量,`hidden_size`是隐藏层的大小,而`output_size`则是希望预测的目标变量数量。`forward`函数中的`future`参数指定了要预测的时间步数。 ### 应用场景 此类模型广泛应用于电力需求预测、金融市场分析等领域,特别是在需要根据过去的数据点来做出未来决策的情况下非常有效。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值