自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Debroon

闲下来就写点东西。

  • 博客(972)
  • 资源 (46)
  • 问答 (1)
  • 收藏
  • 关注

原创 医疗大模型 的 应用优化指南

阿尔茨海默病新药Aducanumab的疗效”“急性ST段抬高型心肌梗死PCI适应症”“3天前发热,昨天出现皮疹,今天关节痛”“血常规+心电图+胸片异常的综合分析”“患者本次住院与上次住院的病情对比”“CAR-T治疗血液肿瘤的最新进展”“胸痛+呼吸困难+D-二聚体升高”“糖尿病肾病的ACE抑制剂应用”“急性ST段抬高型心肌梗死治疗”“65岁男性心房颤动治疗方案”“罕见遗传病XYZ的治疗方案”“心电图报告中的QT间期数值”等等,而非简单的检索+生成。“X光片显示的肺部阴影位置”“生化全套+血常规综合分析”

2025-07-22 15:00:22 1159

原创 论文分析方法:让任何人,任何时间,任何地点,看懂,任何专业,任何论文

这次需要明确输入、处理过程、输出及其之间的具体关系,还要解释每一步中涉及的技术和方法,以及它们是如何互相衔接的。追问:对【XXX】所有原文,再做一个概念图,格式:决策树形式+【XXX】代表什么关系。

2024-12-02 14:16:14 2566 6

原创 ProRL:解决RL无法创新问题,突破预训练边界创造新推理路径

时间尺度是RL创新能力的决定性因素↓短期训练(几百步)只能优化已有路径↓长期训练( 2000 + 步)才能探索新路径↓但长期训练会导致熵崩塌↓需要控制系统(KL + 温度 + 重置)维持探索↓ProRL = 时间 + 控制 = 创新ProRL成功的核心:不是单一技术,而是特征→解法的精确映射体系ProRL框架 = {"特征识别": 多维度监控,"解法匹配": 一对一映射,"动态调整": 实时响应,"验证机制": 多角度验证。

2025-08-22 09:54:37 902

原创 深入DiagGym源码解析:解决AI不会望闻问切,在虚拟医院里训练千万次问诊流程

代码:https://github.com/MAGIC-AI4Med/DiagGym这个DOT流程图采用自顶向下的布局,将DiagGym系统分解为六个逻辑阶段,每个阶段用不同颜色的子图框区分。整个流程从原始数据开始,经过环境构建、智能体训练、算法优化、生产部署,最终形成持续学习的闭环系统。流程从MIMIC-IV原始数据开始,这是一个圆柱形节点,代表数据库存储。MIMIC-IV是麻省理工学院维护的重症监护医疗数据库,包含超过50万份住院记录。从原始数据库分出四条并行的提取路径:出院小结路径:提取患者的完整病

2025-08-18 15:50:23 359

原创 Baichuan-M1:打破SFT模型“问→答“的简单映射,实现从“一步到位“到“逐步探索-验证-决策→再探索“的医疗迭代推理链

让模型生成多样化的推理路径,避免思维定式。医学诊断往往需要考虑多种可能性,不能一开始就锁定某个答案。

2025-08-18 11:35:47 1112

原创 CV 医学影像分类、分割、目标检测,之【3D肝脏分割】项目拆解

问55:D3是什么意思?答55:3D的意思,表示三维U-Net。问56:为什么继承Dataset?答56:PyTorch要求,实现和__len__接口。问57:transformer是什么?答57:图像变换操作,如缩放、裁剪。])问79:Compose是什么?答79:组合多个变换,按顺序执行。问80:为什么缩放到96×96?答80:原始512×512太大,3D卷积内存消耗巨大。问81:96这个数字有什么特殊?答81:是32的倍数,适合多次下采样(96→48→24→12→6)。

2025-08-14 11:16:19 877

原创 CV 医学影像分类、分割、目标检测,之【肺结节目标检测】项目拆解

数据探索阶段流程:读取 → 匹配 → 可视化数据准备阶段流程:读取 → 复制整理 → 保存重组 → 张量转换 → 可视化 → 导出结果↓ ↓ ↓ ↓ ↓(备份) (标准化) (深度学习) (验证) (持久化)

2025-08-14 09:08:37 1067

原创 CV 医学影像分类、分割、目标检测,之【腹腔多器官语义分割】项目拆解

idx={'0':0,'63':1,'126':2,'189':3,'252':4,问84:为什么要进行像素值映射?答84:将原始的任意像素值转换为连续的类别ID(0,1,2,3,4)。问85:为什么类别ID要从0开始连续?答85:深度学习模型通常要求类别标签是连续整数,便于计算损失函数。问86:字典的键为什么是字符串?答86:后续代码将像素值转为字符串进行映射,保持数据类型一致。问87:这5个类别分别代表什么?答87:通常0是背景,1-4是不同的器官或组织区域。

2025-08-13 15:12:42 1136

原创 CV 医学影像分类、分割、目标检测,之【肝脏分割】项目拆解

问1:为什么要继承data.Dataset?答1:PyTorch要求自定义数据集必须实现__len__和__getitem__方法。问2:transform参数的作用?答2:数据预处理和增强的函数管道。问3:__getitem__什么时候被调用?答3:DataLoader迭代时自动调用,获取单个样本。问4:Image.open返回什么类型?答4:PIL.Image对象,还未加载到内存。问5:transformer做了什么转换?答5:PIL图像→调整尺寸→转为张量→归一化到[0,1]。])问1。

2025-08-13 09:46:44 645

原创 CV 医学影像分类、分割、目标检测,之【脑肿瘤分割】项目拆解

)问44:Compose是什么?答44:组合多个变换操作,按顺序执行。问45:为什么选256x256?答45:2的幂次方,适合GPU计算;足够保留细节又不太大。问46:ToTensor()具体做了什么?答46:1)将PIL图像或numpy数组转为张量 2)把形状从(H,W,C)变为(C,H,W) 3)归一化到[0,1]。])问47:训练和测试变换为什么一样?答47:通常训练会加数据增强(旋转、翻转等),这里简化了。问48:为什么继承Dataset?

2025-08-13 08:15:26 1151

原创 CV 医学影像分类、分割、目标检测,之【皮肤病分类】项目拆解

Compose是什么设计模式?组合模式,串联多个变换0.2的概率是每张图片独立的吗?是的,每次调用独立决定为什么是68度不是90度?可能是经验值,避免过度旋转丢失信息灰度化的目的?增强模型对颜色变化的鲁棒性为什么是128不是224?平衡精度和速度,128够用且更快Tensor和array的内存布局区别?Tensor是CHW(通道-高-宽),array通常是HWC这个归一化后的范围?(pixel-0.5)/0.5,从[0,1]变为[-1,1]为什么要归一化到[-1,1]?零中心化,有助于梯度下降收敛。

2025-08-12 10:55:21 1212

原创 CV 医学影像分类、分割、目标检测,之【血细胞分类】项目拆解

训练数据不足导致模型过拟合和泛化能力差数据增强解法 = 几何变换增强(因为图像空间不变性特征) + 颜色空间增强(因为光照不变性特征) + 尺寸标准化(因为输入统一性特征) + 数值归一化(因为数值稳定性特征)子解法1:几何变换增强- 随机水平翻转- 随机旋转之所以用几何变换,是因为图像空间不变性特征:同一物体在不同角度、翻转状态下本质相同例子:一张猫的照片,向左看和向右看、旋转30度,仍然是猫子解法2:颜色空间增强- 随机灰度化之所以用颜色变换,是因为光照不变性特征。

2025-08-11 11:48:19 1095

原创 DeepSeek 金融投资智能体,根据人性来设计交易系统

我听说,DeepSeek 创始人梁文锋的量化基金,就是通过人性规律来设计量化交易策略。狗头保命,是听说。

2025-08-06 17:31:03 887

原创 MetaAgent = 给AI装上了“学习能力“的开关,让机器第一次真正会“成长“

提出一种从最小工作流开始,通过"边做边学"原则不断自我改进的智能体范式,无需改变模型参数或大规模后训练。正例:就像一个刚入职的研究助理,一开始只会基本的文献搜索和阅读理解,但通过不断承接研究项目、总结经验教训、建立个人知识库,最终成长为能独立完成复杂研究任务的专家。反例:传统方法像是给机器人预编程所有可能的操作步骤,或者通过大量训练数据强化特定技能,但遇到新情况就束手无策,缺乏自适应学习能力。

2025-08-05 09:59:40 1138

原创 AI 编程秘籍:具体化描述,AI其实比人类更需要详细的说明书

肯定正确部分(功能),明确指出需要改进的具体方面(视觉效果),给出详细的改进方向。每次改进,不要破坏已有的好东西,每次改进都明确指出要保持的功能和要修改的部分。采用 MVP 原则,实现包含最少功能的产品输出方案。参考产品:类似的产品有哪些,学习他们的什么方面。成功标准:如何判断这个产品是成功的、示例说明。交互流程:规划用户使用产品的流程和交互方式。使用场景:在什么时间、地点、情况下使用。目标用户:具体到年龄、职业、使用习惯。功能边界:产品能做什么,不能做什么。必备功能:最少需要的3个功能。

2025-08-04 11:31:17 312

原创 AI看例子也讲“位置“:前面的例子比后面的例子管用,给AI看的例子放在提示词前面比放在后面效果好20%

QWEN-1.5B在AG News上:ssp(76%) vs eum(56%),相差20个百分点,预测变化率高达45.5%(从sum切换到eum时)因为transformer架构使用因果掩码,后面的token只能"看到"前面的token,而前面的token会影响所有后续位置的计算。AI处理提示词时,会给前面的内容分配更多注意力权重,这导致前面的演示样例对最终输出影响更大。小模型(1.5B-8B):位置敏感性强,ssp/esp明显优于eum。生成任务:位置效应更复杂,大模型有时偏好后置位置。

2025-08-04 09:39:56 364

原创 研究者分析了116个健康APP发现,虽然AI技术已经很厉害了,但86%的健康APP还在用最基础的AI功能(比如简单提醒、聊天机器人),真正智能化的APP少得可怜,说明这个市场还有巨大发展空间。

这个研究告诉我们:现在大部分健康APP的AI功能都很初级,就像用大炮打蚊子,明明有很厉害的AI技术,却只用来做最基础的事情。市场上缺少真正智能化的健康APP,这是个巨大的商机!成功健康App的关键在于精准匹配用户确定性需求与AI信息处理能力用户在健康领域优先需要"掌控感"而非"便利性",AI应赋能用户而非替代用户需求有层次性(确定性→便利性→智能化),技术应分阶段匹配设计分层级信息透明化功能,用AI优化信息处理而非决策制定。

2025-08-04 08:54:21 666

原创 大模型幻觉的本质:深度=逻辑层次,宽度=组合限制,深度为n的神经网络最多只能处理n层逻辑推理,宽度为w的网络无法区分超过w+1个复杂对象的组合

当遇到超出能力的复杂逻辑时,它就用已知的简单逻辑"拼凑"答案,就像不认识字的人看图说话,会编出似是而非的故事。:应该开发"专科化"的AI,比如专门处理心血管逻辑的AI、专门处理神经系统逻辑的AI,而不是追求"全科万能"。:需要多层嵌套推理,比如"症状A+症状B→可能疾病C,但如果还有症状D,则排除疾病C,考虑疾病E"。:是的,这是典型的高阶逻辑推理,需要同时处理多个条件的复杂组合,超出了论文描述的网络深度限制。:罕见病往往需要精确识别"症状组合的独特性",这需要高精度的逻辑区分能力,正是AI的薄弱环节。

2025-08-01 15:07:15 1238

原创 多源知识库建设噩梦:把知识图谱结构化当精密雷达,比文本匹配更准确的多源冲突自动识别技术,解决比数据丢失更可怕的知识矛盾传播

通过图结构操作实现冲突复杂度的精确控制。

2025-08-01 11:56:20 920

原创 怎么解决 医疗RAG 多术语,用户口语化表达和知识库专业资料的匹配差异?

❌ 张阿姨的困惑: "我肚子胀,吃不下饭,没劲儿,这是怎么回事?" → 系统返回:一堆不相关的碎片信息→ 患者更困惑: "到底是什么病?我该怎么办?

2025-07-25 17:49:12 1068

原创 多模态数据处理系统:用AI读PDF的智能助手系统分析

多模态PDF识别子解法(因为PDF包含图文混合特征) + 锚点文本辅助子解法(因为需要位置信息辅助理解特征) + 文档结构化解析子解法(因为文档存在层级标题结构特征) + 知识图谱三元组抽取子解法(因为需要提取原子事实和关键元素特征) + 并发处理优化子解法(因为多页处理效率特征)双卡 48G 显存可部署,单卡 22 G 只能用 3B多模态模型 + 7B语言模型。这些局限性都直接来源于代码实现,体现了当前系统的技术约束。

2025-07-24 17:37:12 793

原创 婚姻情感 24:要怎么成为一个好男人

就是即使对方做错了事,你也不冷冰冰地报复或者一直翻旧账。而是给对方台阶下,让关系能缓和。

2025-07-17 09:58:34 951 9

原创 最强中医大模型,同时解决 AI 不会主动追问 + 多模态融合难题 + 没有参考幻觉问题

诊断准确率提升 60%,多轮问诊准确率 85%,问诊轮次匹配医生91%,治疗建议超GPT-4o 2.3倍,可代替50%初级医生,效率提升 5 倍

2025-07-10 10:16:44 1245

原创 婚姻情感 23:打开上帝视角看爱恨情仇

镜子本来是空的,它的本性就是没有一物,静的、安稳的,不动的,这就像镜子照出来的影像。你能明白自己只是一个虚拟的存在,这就像在网游里,你知道自己只不过是个角色,所有的情感、经历、反应,都是游戏里的设定。而且,你要知道,你的一切情绪,所有的烦恼,根本就来源于镜子外面的世界,来源于那些你执着的“相”。你看,镜子外的世界,它永远都在变。你能做到这一点,你就和宇宙一体,完全无惧于外界的变化,因为你知道,所有的一切都不过是暂时的假象。当你明白这一点,就能掌控自己的世界,就像遥控器一样,控制你的念头,控制你的生活。

2025-07-09 14:57:25 729 6

原创 将 150 套提示词推理模版微调给大模型,模型自己就能选最佳解题路径

MoR 把“思维路线(Reasoning Path)”由“人类的即时指令”沉淀为“模型的长期记忆”,让 LLM 从遵命执行者升级为“带脑子”的自适应体。再增加到 500 条,对提示依赖更小(IO 准确率 0.734),但未必持续增益,说明策略多而不精可能稀释训练信号。整张图说明:MoR 通过“先批量生成推理模板→再筛选并与真实题目配对→过滤正确答案”这两大阶段,把多样化的推理策略写入模型参数。答1:把多样的推理策略直接“写进”大模型(LLM)的参数里,让模型。答9:衡量“策略多样性”对效果的影响。

2025-07-04 16:43:17 967

原创 婚姻情感 22:不纠结、不内耗指南

现实世界人生不管怎么组合,和任何人组合,一定都是遗憾的、不圆满的,无论怎么组合都是这样的!幸福一定是你体验了改善了你生活的时候,你才会本能的一觉醒来很开心、很幸福,其他都是短暂的。反过来给你增加成本的,其实就是不喜欢你,而不喜欢你的人,无论你做什么都不会喜欢你。男人的真爱,就是需要女人的身子,榨取女人的价值,最后留下付出真心的人,独自悲伤。一个男人靠近你,不是来爱你的,是来榨取你身上的价值,或者拿钱和资源跟你交换价值。你开一个公司,里面的人天天有矛盾,公司是来赚钱的,不是调解矛盾的,全部换掉。

2025-07-04 11:48:26 650 1

原创 提问思维模版:通过提问进入“提问促思考模式”,从而一步步发现问题和解决问题

很震惊,自媒体深度长文,居然可以通过连续深度的 26 个问题得来。同时,医疗治疗策略 + 药物,也可以通过连续的提问 + 最新信息,来做一份详细的调研报告。

2025-06-26 10:08:46 1175

原创 医学 Agent:自带医学深度调研 deep research,优化治疗策略+药物参考

医疗顾问AI系统 - 基于Qwen API 的智能医疗助手最终目标:构建一个能够查询疾病治疗方案和药物知识的AI医疗顾问系统层层分解:输出结果,居然连不上网========== 医疗顾问AI系统启动 ==========基于Qwen API的智能医疗助手功能:疾病治疗方案查询 + 药物处方建议[1/5] 正在配置系统环境…[2/5] 正在初始化Qwen模型…[3/5] 正在准备医疗工具…[4/5] 正在创建医疗AI代理…[5/5] 系统启动完成,开始医疗咨询…===== 用户咨询: 患者有2

2025-06-23 17:18:33 779

原创 成为超人 29:我是一个超级专注、超级认真、超级负责、超越懦弱和需要希望 的永恒一息

竞争力 = 执行力 = 干 = 没有感情的干 = 没有情绪的干 = 往四里的干 = 没有理由的干 = 今天我就要干 = 没有为什么要干 = 干了再调整。如果你一定要跟最顶尖的人竞争,你觉得自己技术不如别人,你要技术超过别人你才能赚钱,那你很难赚钱的,没有博弈优势。语文课文说,颜回是孔子最好的学生 — 一箪食,一瓢饮,在陋巷。这不行,那不行,思想一直和体验打架,内耗,做不出理性的选择。你是一个老师,你要教新手,你的市场才会足够大,才会足够赚钱。不管游戏,人生,各种场景,要竞争,就必须有不公平优势。

2025-06-23 12:01:45 590 6

原创 25年奇安信大模型面经:通过一些深刻的面试问题,来加深理解!

之所以聚类摘要,是因为。

2025-06-19 10:47:13 1136

原创 前列腺MRI数据增强:文本 × 病理 × 扩散模型,在小样本下,用报告文本和病理标签引导生成的扩散模型框架

本文提出一种基于扩散模型的小样本3D前列腺MRI生成方法,通过双条件机制解决医疗数据稀缺问题。核心创新是CCELLA适配器,在文本编码阶段同时执行跨模态对齐和病理预测,并通过联合损失(L1+分类损失)强化图像-文本-类别一致性。实验表明,该方法在5.8k样本上取得3D FID 0.025,比单条件模型提升显著。生成数据用于下游分类任务可提升准确率5个百分点。研究还分析了层级特征拼接、默认负类假设等隐性方法的作用,并探讨了多模态扩展、隐私保护等未来方向。

2025-06-16 11:44:12 722

原创 归一化 Normalization 技术概述、优化思路

归一化技术概述与优化思路 归一化技术的核心目的是将数据分布统一到合适尺度,通过移除过大或过小的差异,同时保留网络表达能力。关键操作包括:选择统计维度(批、通道、空间、序列、特征等)和添加可学习参数(如γ和β)进行修正。 不同维度的归一化各有特点: Batch维度:大批量时统计准确,但小批量不稳定 通道维度:保留特征多样性,但需要合理分组 空间维度:减少局部噪声,但可能丢失细节 序列维度:稳定时序网络,但需谨慎处理长序列 特征维度:简单有效,但可能过度平滑异质特征 优化建议:根据任务特点选择合适的归一化维度组

2025-06-04 17:32:48 1078

原创 rStar-Math:蒙特卡洛搜索增强 LLM 逻辑推理能力

本文提出了一种名为rStar-Math的创新方法,旨在提升小型语言模型(1.5B-7B参数)的数学推理能力。该方法通过结合蒙特卡洛树搜索(MCTS)和代码辅助的多步验证,让小型模型能够进行深度推理。核心创新点包括:1)使用代码执行验证中间推理步骤的准确性;2)开发过程偏好模型(PPM)对推理步骤进行细粒度评估;3)构建多轮自我进化框架,通过迭代训练不断提升模型性能。实验表明,该方法能使7B参数模型在MATH等数学竞赛数据集上取得与更大规模模型相媲美的表现。研究发现小型模型具备自我反思能力,能纠正错误推理路径

2025-05-26 15:30:55 1263

原创 链式思维模型可能并非如我们所想,如果中间语义推理可以乱写.....

摘要:本文探讨了链式思维模型(CoT)在大模型中的有效性,特别是中间推理步骤对最终答案准确性的影响。研究通过实验对比了仅答案训练、正确轨迹训练和随机轨迹训练三种方法,发现即使中间推理步骤与问题不匹配,模型性能仍可能提升。这表明中间推理的语义正确性并非模型性能提升的关键因素,而可能是提示工程的作用。研究还指出,模型输出的推理链不一定反映其内部计算过程,警示对模型“自我思考”能力的过度解读。核心发现包括:中间推理序列能提升准确率,但无需严格对应问题;随机推理轨迹亦可能带来提升;生成的推理文本未必反映真实内部过程

2025-05-23 15:18:44 1128

原创 患者图谱RAG + GAP提示框架:解决医疗大模型忽视关键细节(如怀孕 30 周 -> 孕期禁忌)乱开药

本文提出了一种基于图辅助提示(GAP)框架的医疗对话系统,旨在解决大规模语言模型(LLMs)在医疗对话中忽视关键细节和缺乏专业知识的问题。研究背景指出,LLMs在医疗对话中常忽略细粒度信息,导致用药推荐不准确甚至存在安全风险。为此,作者设计了GAP框架,通过构建以患者为中心的图结构,显式表示患者状态、疾病、症状和药物等关键信息,并结合检索增强生成(RAG)方法,生成更准确的用药推荐。核心方法包括医学信息抽取、图构建、邻域提示与路径提示生成,最终综合对话、图结构和检索信息生成推荐。实验表明,GAP框架在准确率

2025-05-21 09:38:06 1143

原创 让大模型像人类一样,边搜索+边提炼:非常医疗诊疗的循证支持

论文《Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs》提出了一种名为AutoRefine的新框架,旨在解决大语言模型(LLMs)在检索增强推理中的局限性。传统方法通常只关注最终答案的正确性,而忽视了检索和提炼过程的质量。AutoRefine通过引入“search-and-refine-during-think”范式,显式地增加了信息提炼步骤,并结合检索奖励和答案奖励,利用强化学习算法(GRPO)

2025-05-20 10:33:08 1241

原创 X-R1:训练医疗推理大模型

X-R1 是一个基于端到端强化学习(RL)的训练框架,旨在以低成本提升大模型的推理能力,特别关注“aha moment”式的推理觉悟。它支持多种规模模型(0.5B/1.5B/3B/7B),适用于数学、医学等多领域推理任务。在医疗推理方面,X-R1 使用高质量医疗数据集驱动 RL 训练,并以 GPT-4o-mini 作为奖励模型,自动化评估医学答案的语义正确性。通过奖励函数,模型学会“推理-作答”分离、格式规范和多步推理。数据集主要来自 FreedomIntelligence/medical-o1-verif

2025-05-15 15:51:04 934

原创 开源项目学习的最新方法,解决 LLM 长上下文限制,深度理解 Github 项目

本文介绍了两种学习开源项目的新方法,旨在解决大型语言模型(LLM)在处理长上下文时的限制。第一种方法是通过DeepWiki平台,用户只需输入Github项目链接,即可自动生成项目文档和代码解析,极大简化了代码阅读过程。第二种方法是结合本地工具Cursor和Gemini 2.5 pro,利用Gemini的深度推理能力和超长上下文处理技术,结合Cursor的RAG(检索增强生成)功能,适合深入学习大型项目。这两种方法为开发者提供了更高效的项目学习途径,减少了对手动代码阅读的依赖。

2025-05-15 08:25:01 269

原创 Satori:元动作 + 内建搜索机制,让大模型实现超级推理能力

相比同基座的纯指令微调模型,Satori-Qwen-7B 在数学和跨域推理测试中通常提升 2~10 个点。与此同时,模型只需要一个单体便能实现“自我搜索、自我纠错”,无需外部大模型做审校,也不必依赖昂贵的手动逐步标注。

2025-05-10 23:23:25 1522

原创 医学大模型的谨慎模式上线:用精密推理告诉你,这病还差哪些证据?

诊断AI三合一:会诊断、能解释,还会提醒你证据不足。这不是普通的病例分类,而是“自动承认盲区”的全新范式

2025-05-09 14:45:15 902

强大的防御跨站点请求伪造.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/96846943

2019-08-01

3.机器学习常用算法.pdf

配套博客:https://blog.csdn.net/qq_41739364/column/info/42524 的 第 4 篇。

2019-08-13

系统学习 公钥体系

配套博客 https://blog.csdn.net/qq_41739364/article/details/86775886 ,效果最佳。

2019-03-28

渗透测试实践指南:必知必会的工具与方法.pdf

中文版,配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-06-28

RSA加密 C语言实现

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

初等数论大全

计算机数学专题5: 数论配套资料 博客地址:https://mp.csdn.net/postedit/86761357

2019-04-24

阶的估计.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/86718524

2019-09-03

att_face.zip

人脸测试数据集,配套博客:https://blog.csdn.net/qq_41739364/category_9414685.html

2020-07-03

dict.txt.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/96767359

2019-07-23

DES加密代码 java

匹配博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

0day安全:软件漏洞分析技术(第2版)一 PART2.pdf

全书分为俩部分,这是第二部分。 配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

phpStudy.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/93403910

2019-07-19

C语言RSA素数部分

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-08

burpsuite实战指南.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-07-02

SQL字符型注入漏洞.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/94025729

2019-07-18

端口大全介绍(2).doc

很详细,配套博客:https://mp.csdn.net/postedit/93862232

2019-06-27

DES加密代码 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

0day安全:软件漏洞分析技术(第2版)一 PART1.pdf

全书分为 2 部分,这是第一部,配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

1.数据挖掘入门.pdf

配套博客:https://blog.csdn.net/qq_41739364/column/info/42524 的 第四章。

2019-08-13

DES加密位操作部分 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

blog配套资料、blog配套资料、blog配套资料

blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料

2023-07-14

博客配套资料博客配套资料

博客配套资料博客配套资料博客配套资料

2022-08-06

配套博客资料,配套博客资料

配套博客资料

2022-08-05

博客配套https://download.csdn.net/download/qq_41739364/86339152

https://download.csdn.net/download/qq_41739364/86339152

2022-08-05

博客配套博客配套博客配套

博客配套博客配套博客配套博客配套

2022-08-05

莎士比亚诗歌数据集.txt.zip

博客配套资源

2021-10-08

口罩厂亏损分析的相关数据

配套博客:https://blog.csdn.net/qq_41739364

2021-02-23

神经网络识别猫的项目代码

博客程序:https://blog.csdn.net/qq_41739364/article/details/118094724

2021-07-17

疫情监控项目源码.zip

博客配套:https://blog.csdn.net/qq_41739364/article/details/115742139

2021-04-15

att_faces.zip

人脸数据集,数据集里有 40 个人,每个都有 10 张照片,分别存储在 40 个文件夹里,s1-s40,每个文件夹下面都有 10 张 .pgm 照片,每张照片的尺寸 112*92(长 * 宽)。

2020-07-04

processed_data.xlsx

博客配套数据:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

original_data.xlsx

博客配套资源:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

data.xlsx.zip

博客配套数据

2021-08-21

博客配套资源数据集.zip

博客配套资源

2021-10-09

恐龙名字数据集.txt.zip

博客配套数据集

2021-10-08

我的数据集+我的数据集.zip

博客配套资源

2021-09-07

smi_sol.dat

化学分子数据

2021-03-08

data.xlsx ....

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-03-08

label.xlsx ....

label.xlsx ....

2021-03-08

breast_cancer.xlsx

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-02-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除