#时间序列分析:给定一个已被观测了的时间序列,预测该序列的未来值 # 时间序列算法: # 1、平滑法:常用语趋势分析和预测,利用修匀技术,虚弱短期随机波动对序列的影响,使序列平滑化,根据平滑技术的不同,分为移动平均法和指数平滑法 # 2、趋势拟合法:把时间作为自变量,相应的序列观察值作为因变量,建立回归模型,根据序列的特征,可具体分为线性拟合和曲线拟合 # 3、组合模型:时间序列的变化主要受到长期趋势,季节变动,周期变动和不规则变动四个因素的影响,可以构架加法模型和乘法模型 # 4、AR模型:以前P期的序列值为自变量,随机变量的取值为因变量建立线性回归模型 # 5、MA模型:随机变量的取值与前期序列值无关,建立随机变量的取值与前q期随机扰动的线性回归模型 # 6、ARMA模型:随机变量的取值不仅与前期序列值有关还与前期随机扰动有关 # 7、ARIMA模型:许多非平稳序列差分后会显示出平稳序列的性质,称这个非平稳序列为差分平稳序列。 # 8、ARCH模型:适用于具有异方差性并且异方差函数短期自相关 # 9、GARCH模型及其衍生模型:能够反应实际序列的长期记忆性、信息的非对称性 # 时间序列的预处理:首先要对它进行纯随机性和平稳性的检验,根据检验结果将序列分为不同类型,采用不同方法分析。 # 对于纯随机序列,又称为白噪声序列,序列各项之间没有任何相关关系,序列在进行完全无序的随机波动,可以终止对该序列的分析。白噪声序列是没有信息可提取的平稳序列。 # 对于平稳非白噪声序列,均值和方差是常数,建立一个线性模型来拟合该序列的发展,最常用ARMA模型。 # 对于非平稳序列,由于均值和方差不稳定,一般是将其转化为平稳序列再进行研究。 #