Python数据分析与挖掘实战第五章笔记之时间序列分析

本文介绍了Python中时间序列分析的关键概念和算法,包括平滑法、趋势拟合、ARIMA模型等。重点讲解了ARIMA模型的适用场景及实现步骤,通过示例展示了如何对数据进行平稳性检验、建模和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#时间序列分析:给定一个已被观测了的时间序列,预测该序列的未来值
# 时间序列算法:
# 1、平滑法:常用语趋势分析和预测,利用修匀技术,虚弱短期随机波动对序列的影响,使序列平滑化,根据平滑技术的不同,分为移动平均法和指数平滑法
# 2、趋势拟合法:把时间作为自变量,相应的序列观察值作为因变量,建立回归模型,根据序列的特征,可具体分为线性拟合和曲线拟合
# 3、组合模型:时间序列的变化主要受到长期趋势,季节变动,周期变动和不规则变动四个因素的影响,可以构架加法模型和乘法模型
# 4AR模型:以前P期的序列值为自变量,随机变量的取值为因变量建立线性回归模型
# 5MA模型:随机变量的取值与前期序列值无关,建立随机变量的取值与前q期随机扰动的线性回归模型
# 6ARMA模型:随机变量的取值不仅与前期序列值有关还与前期随机扰动有关
# 7ARIMA模型:许多非平稳序列差分后会显示出平稳序列的性质,称这个非平稳序列为差分平稳序列。
# 8ARCH模型:适用于具有异方差性并且异方差函数短期自相关
# 9GARCH模型及其衍生模型:能够反应实际序列的长期记忆性、信息的非对称性

# 时间序列的预处理:首先要对它进行纯随机性和平稳性的检验,根据检验结果将序列分为不同类型,采用不同方法分析。
# 对于纯随机序列,又称为白噪声序列,序列各项之间没有任何相关关系,序列在进行完全无序的随机波动,可以终止对该序列的分析。白噪声序列是没有信息可提取的平稳序列。
# 对于平稳非白噪声序列,均值和方差是常数,建立一个线性模型来拟合该序列的发展,最常用ARMA模型。
# 对于非平稳序列,由于均值和方差不稳定,一般是将其转化为平稳序列再进行研究。

# 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值