
Python深度学习之路
文章平均质量分 61
Vax_Loves_1314
正不断走向秃顶的程序猿人生~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Python深度学习之路】-4 监督学习
数据的准备 使用scikit-learn.datasets模块的make_classification()函数。监督学习:根据积累的经验数据对新的数据或将来的数据进行预测,或者进行分类的一种学习方式。无监督学习:对积累的经验数据中所存在的结构,以及关联性进行分析的学习方式。强化学习:通过设定报酬、环境等条件来实现学习效果最大化的一种学习方式。原创 2022-10-24 15:02:14 · 1362 阅读 · 1 评论 -
【Python深度学习之路】-2.2 过拟合与集成学习
在实现机器学习的过程中,会出现的一个问题是“过拟合”。“过拟合”是指对数据进行了“过度学习的状态”。我们将出于“过拟合”的状态称为“方差”过高,将出于“欠拟合”的状态称为“偏置”过高。有一种预防“过拟合”的方法被称为留出法。我们通过使用留出法,将学习数据划分为“训练数据”和“测试数据”。训练数据用于模型的学习,测试数据用于对完成学习后的模型进行性能评估。在留出法的派生算法中,包含“k折交叉验证”和“留一交叉验证”等方法。原创 2022-10-16 21:12:14 · 1207 阅读 · 0 评论 -
【Python深度学习之路】-2.1 机器学习的流程
有一种预防“过拟合”的方法被称为留出法。我们通过使用留出法,将学习数据划分为“训练数据”和“测试数据”。训练数据用于模型的学习,测试数据用于对完成学习后的模型进行性能评估。在留出法的派生算法中,包含“k折交叉验证”和“留一交叉验证”等方法。原创 2022-10-15 11:51:18 · 1256 阅读 · 0 评论 -
【Python深度学习之路】-1 机器学习概论
“监督学习”作为机器学习领域中的代表,其特点是处理名为“监督数据”的问题,以及该问题所附带的答案的数据。它是通过使用机器学习算法从学习数据中找出答案,再使用附带的标签数据来对比答案,不断地与正确答案进行对比,直到得出正确答案为止。而“强化学习”则属于最近几年才开始受到关注的技术,在棋盘类游戏对战中的应用是其强项。强化学习在围棋对战中的应用无疑是其最广为人知的案例。原创 2022-10-13 11:57:55 · 888 阅读 · 0 评论 -
【Python深度学习之路】时间序列数据
时间序列数据(time series data)是在不同时间上收集到的数据,用于所描述现象随时间变化的情况。这类数据反映了某一事物、现象等随时间的变化状态或程度。原创 2022-03-02 14:48:25 · 1844 阅读 · 0 评论 -
【Python深度学习之路】产生随机数
随机数的生成1.设置种子计算机是根据被称为“种子(seed)”的数据来生成随机数的。所谓种子,是指在生成随机数的过程中所使用的初始值,如果种子的值固定不变,生成的随机数序列也是不变的。通过使用相同的随机数序列,在同样的条件下,即使是使用了随机数得到的计算结果也是可重现的。如果不对种子进行设置,计算机就会使用当前的时间作为种子的初始值,因此每次执行代码都会有输出不同的随机数。可以通过将种子(整数)传递给 numpy.random.seed() 对种子的数值进行设置。编程实现:设置种子/不设置种原创 2022-03-01 19:17:04 · 2264 阅读 · 0 评论 -
【Python深度学习之路】-3.2PR曲线
1.何谓PR曲线所谓PR曲线是指用横轴表示召回率,纵轴表示精确率,将数据绘制成图表的形式所得到的曲线。召回率和准确率两个指标成反比关系,所谓反比关系,指的是当提升精确率时,召回率会降低,相反如果要提供召回率,则精确率会相应降低。2.基于PR曲线的模型评估如果将PR曲线模型放到商业领域中,将问题转换为如何从所有的客户中挑选优质客户的问题,将优质客户分为优质客户的客户和真正的优质客户两类,则具体内容如下:精确率高,召回率低的状态:市场推广费用中浪费的部分较少,但是漏掉的优质客户会比较多,即存在损失原创 2022-02-25 21:09:50 · 2761 阅读 · 0 评论 -
【Python深度学习之路】-3.1性能评价指标
深度学习性能评价指标:混淆矩阵、准确率、F值原创 2022-02-25 20:00:03 · 1099 阅读 · 0 评论