Pointsift复现

本文介绍了PointSIFT的复现过程,包括论文链接、代码仓库、数据集下载和训练步骤。关键步骤涉及修改tensorflow路径、编译tf_ops以及调整训练参数。虽然训练速度较慢,但成功实现了3D语义分割的初步运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PointSIFT是3D语义分割

先看效果
在这里插入图片描述
论文地址:http://www.mvig.org/publications/pointSIFT.html
代码地址:https://github.com/MVIG-SJTU/pointSIFT

数据集需要单独下载,下载后创建一个data文件夹,把解压文件放入即可

数据集:https://shapenet.cs.stanford.edu/media/scannet_data_pointnet2.zip

训练流程readme已经给出了足够详细的步骤,这里给出最关键的几步

要手动更改所有的.sh文件,更改里面的tensorflow路径

1.查看自己的tensorflow路径

    import tensorflow as tf
    # include path
    print(tf.sysconfig.get_include
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值