【LeetCode】对角线遍历 (数组)
题目:
给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示。
示例:
输入:[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,4,7,5,3,6,8,9]
解释:
方法一:对角线迭代和翻转
思路:
解决许多复杂问题的常见策略是首先解决该问题的简化问题,然后考虑从简化问题到原始问题需要做哪些修改,方法一就是这种思路。首先考虑按照逐条对角线打印元素,而不考虑翻转的情况。
public int[] findDiagonalOrder(int[][] matrix) {
if(matrix==null||matrix.length==0)
return new int[0];
int time = matrix.length+matrix[0].length-1;
int array[] = new int[matrix.length*matrix[0].length];
int k = 0;
ArrayList<Integer> arrList = new ArrayList<Integer>();
for(int i=0;i<time;i++) {
int row = i<matrix[0].length?0:i-matrix[0].length+1;
int col = i<matrix[0].length?i:matrix[0].length-1;
while(row<matrix.length&&col>=0)
arrList.add(matrix[row++][col--]);
if(i%2==0)
Collections.reverse(arrList);
for(int x:arrList)
array[k++] = x;
arrList.clear();
}
return array;
}
方法二:模拟
首先是要知道第一个循环就是控制打印的次数,其次是最重要的每个打印点的起始位置的规律,打印起始可以分为两种,其中一种是从下向上的,另一种是从上向下的。
从题目中的图可以看出如果是要循环i次(打印的次数),i是偶数的起始点是列向右移行不动,当大于列长时,是列不动行向下移动。i是奇数的起始点是列不动行向下移动,当大于行长时,是行不动列向右移动。这就是其中的规律。
public int[] findDiagonalOrder(int[][] matrix) {
if(matrix==null||matrix.length==0)
return new int[0];
int time = matrix.length+matrix[0].length-1;
int array[] = new int[matrix.length*matrix[0].length];
int k = 0;
ArrayList<Integer> arrList = new ArrayList<Integer>();
for(int i=0;i<time;i++) {
int row = i<matrix[0].length?0:i-matrix[0].length+1;
int col = i<matrix[0].length?i:matrix[0].length-1;
while(row<matrix.length&&col>=0)
arrList.add(matrix[row++][col--]);
if(i%2==0)
Collections.reverse(arrList);
for(int x:arrList)
array[k++] = x;
arrList.clear();
}
return array;
}