【LeetCode】对角线遍历 (数组)

本文介绍了一种矩阵对角线遍历的方法,包括对角线迭代和翻转、模拟等两种实现方式,并详细解析了每种方法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【LeetCode】对角线遍历 (数组)

题目:
给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示。
示例:

输入:[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,4,7,5,3,6,8,9]
解释:在这里插入图片描述

方法一:对角线迭代和翻转

思路:
解决许多复杂问题的常见策略是首先解决该问题的简化问题然后考虑从简化问题到原始问题需要做哪些修改,方法一就是这种思路。首先考虑按照逐条对角线打印元素,而不考虑翻转的情况。
在这里插入图片描述

	public int[] findDiagonalOrder(int[][] matrix) {
        if(matrix==null||matrix.length==0)
            return new int[0];

        int time = matrix.length+matrix[0].length-1;
        int array[] = new int[matrix.length*matrix[0].length];
        int k = 0;
        ArrayList<Integer> arrList = new ArrayList<Integer>();
        
        for(int i=0;i<time;i++) {
            int row = i<matrix[0].length?0:i-matrix[0].length+1;
            int col = i<matrix[0].length?i:matrix[0].length-1;
            
            while(row<matrix.length&&col>=0) 
                arrList.add(matrix[row++][col--]);
            
            if(i%2==0)
                Collections.reverse(arrList);
            
            for(int x:arrList)
                array[k++] = x;
            
            arrList.clear();
        }
        
        return array;
    }

方法二:模拟

首先是要知道第一个循环就是控制打印的次数,其次是最重要的每个打印点的起始位置的规律,打印起始可以分为两种,其中一种是从下向上的,另一种是从上向下的。

从题目中的图可以看出如果是要循环i次(打印的次数),i是偶数的起始点是列向右移行不动,当大于列长时,是列不动行向下移动。i是奇数的起始点是列不动行向下移动,当大于行长时,是行不动列向右移动。这就是其中的规律。
在这里插入图片描述

	public int[] findDiagonalOrder(int[][] matrix) {
        if(matrix==null||matrix.length==0)
            return new int[0];

        int time = matrix.length+matrix[0].length-1;
        int array[] = new int[matrix.length*matrix[0].length];
        int k = 0;
        ArrayList<Integer> arrList = new ArrayList<Integer>();
        
        for(int i=0;i<time;i++) {
            int row = i<matrix[0].length?0:i-matrix[0].length+1;
            int col = i<matrix[0].length?i:matrix[0].length-1;
            
            while(row<matrix.length&&col>=0) 
                arrList.add(matrix[row++][col--]);
            
            if(i%2==0)
                Collections.reverse(arrList);
            
            for(int x:arrList)
                array[k++] = x;
            
            arrList.clear();
        }
        
        return array;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值