2020CVPR去雾-Domain Adaptation for Image Dehazing Yuanjie

本文探讨了在实际应用中,由人造训练数据集训练的去雾模型效果不佳的问题。提出了利用合成数据集与真实数据集,通过S2R与R2S网络生成额外数据集,增强模型泛化能力的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章针对人为构造的训练数据集与真实雾霾景象存在区别而导致训练好的模型在实际应用中效果不好的问题进行了探究

整体思想是:已知两个数据集,合成数据集(含label)S和真实数据集R,分别通过S2R网络和R2S网络生成另外两个数据集S->R和R->S,共四个数据集。S和R->S两个数据集共享生成网络参数来训练去雾,R和S->R两个数据集共享另一个生成网络(与前一个网络结构相同)参数来训练去雾。

整个网络的细节部分很多,因而有非常多的loss
在这里插入图片描述

损失函数

1、转换部分
1)对抗损失,二选一举例

从图像和特征两个角度分别计算
2)借鉴与cyclegan,两个变换应该具有连续型,定义连续型损失为
在这里插入图片描述
3)映射损失(没看懂)
在这里插入图片描述
转换部分总结
在这里插入图片描述
2、去雾部分
1)有标签的数据采用均方损失mse,二选一举例
在这里插入图片描述
2)没有标签的数据采用水平、垂直梯度最小化和暗通道值最小化,二选一举例

在这里插入图片描述
在这里插入图片描述
针对1)2)部分另一组数据
在这里插入图片描述
3)两个去雾网络(针对合成数据和真实数据)的生成结果应该尽可能相同,引入连续型损失
在这里插入图片描述
所有损失函数总结
在这里插入图片描述

损失函数太多,超参有点多。如果以后遇到训练效果好而实战效果差的情况可以考虑该方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值