RuntimeError: cudnn RNN backward can only be called in training mode

在使用深度学习的RNN时遇到`RuntimeError: cudnn RNN backward can only be called in training mode`的问题。分析原因在于反向传播时模型处于非训练状态。尝试了网上多种解决方案无效,最终在训练开始前设置模型为训练模式成功解决。同时提醒注意代码中可能触发非train状态的部分,如评估模式或GPU张量管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

RuntimeError: cudnn RNN backward can only be called in training mode

问题分析:

原因是反向传播的时候不能是非train状态。

我的代码里面在反向传播之前加了个Alexnet,Alexnet计算loss后会自己反向传播,此时在整体LSTM反向传播的时候就会出现这个非train状态的问题。

解决:

百度一下:

第一页的方法我都试过,全都没有用。。。

彻底解决:

在开始训练之前加上:

torch.backends.cudnn.enabled=False

即可彻底解决!!!


更新:

刚才那种方法只能强行改变当前模型的状态,最核心的问题还是代码出现了bug,仔细查一查train的过程中有哪些地方触发了非train状态。常见的是触发了evaluation状态。

一种好的调试方法是每次循环进入train的时候记录当前epoch并将其打印出来,如果处于非train,往往会导致多次重复进入循环。

如果此时有张量保存在GPU,往往也会先造成显存爆炸!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值