K折交叉验证
1.交叉验证主要用于防止模型过于复杂而引起的过拟合,是一种评价训练数据的数据集泛化能力的统计方法。其基本思想是将原始数据进行划分,分成训练集和测试集,训练集用来对模型进行训练,测试集用来测试训练得到的模型,以此来作为模型的评价指标。
2.简单的交叉验证:将原始数据D按比例划分,比如7:3,从D中随机选择70%的数据作为训练集train_data,剩余的作为测试集test_data数据只利用了一次,并没有充分利用,对于小数据集,需要充分利用其数据的信息来训练模型,一般会选择K折交叉验证。
3.K折交叉验证:将原始数据D随机分成K份,每次选择(K-1)份作为训练集,剩余的1份作为测试集。交叉验证重复K次,取K次准确率的平均值作为最终模型的评价指标。它可以有效避免过拟合和欠拟合状态的发生,K值的选择根据实际情况调节。
K折交叉验证
最新推荐文章于 2025-07-08 13:15:13 发布