统计项目中所有Mapper接口的数量

先点击收藏和点赞,切勿白嫖,感谢

前言

统计某包下边所有mapper接口下的所有方法数量

代码

import java.io.File;
import java.io.IOException;
import java.lang.reflect.Method;
import java.net.URL;
import java.util.Enumeration;

/**
 * @author baicaizhi
 */
public class Test {
    public static void main(String[] args) {
        String packageName = "com.baicaizhi"; // 修改为你的包名
        int methodCount = countMethodsInMappers(packageName);
        System.out.println("所有 Mapper 类中的方法总数: " + methodCount);
    }

    /**
     * 递归遍历
     * @param packageName 项目包名称
     * @return
     */
    private static int countMethodsInMappers(String packageName) {
        int totalMethods = 0;
        try {
            ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
            assert classLoader != null;
            String path = packageName.replace('.', '/');
            Enumeration<URL> resources = classLoader.getResources(path);
            File dir = new File(resources.nextElement().getFile());

            if (dir.exists()) {
                File[] files = dir.listFiles();
                for (File file : files) {
                    if (file.isDirectory()) {
                        totalMethods += countMethodsInMappers(packageName + "." + file.getName());
                    } else if (file.getName().endsWith("Mapper.class")) {
                        String className = packageName + '.' + file.getName().substring(0, file.getName().length() - 6);
                        Class<?> clazz = Class.forName(className);
                        if (clazz.getSimpleName().endsWith("Mapper")) {
                            Method[] methods = clazz.getDeclaredMethods();
                            System.out.println(clazz.getSimpleName()+":"+methods);
                            totalMethods += methods.length;
                        }
                    }
                }
            }
        } catch (IOException | ClassNotFoundException e) {
            e.printStackTrace();
        }
        return totalMethods;
    }
}
### Python 实现 MapReduce 的方法 在Python中实现MapReduce可以通过多种方式完成,其中一种常见的方式是利用Hadoop Streaming API配合Python编写Mapper和Reducer脚本来处理大规模据集。这种方式允许开发者使用简单的命令行工具以及标准输入输出接口来构建分布式计算任务。 对于具体实现而言,在Mapper部分,程序通常会读取来自`sys.stdin`的据流作为输入源[^3]。这些输入会被逐行解析,并进一步分解成更细粒度的信息单元(比如单词),随后以键值对形式输出至`sys.stdout`以便于下游组件继续加工。值得注意的是,这里产生的并不是最终统计结果而是用于后续聚合操作的中间件。 #### Mapper 脚本实例 ```python import sys def main(): for line in sys.stdin: words = line.strip().split() for word in words: print(f"{word}\t1") if __name__ == "__main__": main() ``` 上述代码展示了最基础版本的Mapper逻辑:接收文本行输入后将其切分成单独词语;针对每一个词项都向控制台打印一次带有计值“1”的记录。这样的设计使得相同词条可以在Reduce阶段轻松汇总其出现频次。 当涉及到Reducer环节时,则主要负责收集所有具有相同志愿者的<key,value>组合并对之求和得到总目。同样地,此过程也依赖于从`stdin`获取待处理项目并通过`stdout`提交运算成果给外部环境。 #### Reducer 脚本实例 ```python from collections import defaultdict import sys current_word = None count = 0 word = None for line in sys.stdin: try: word, num = line.split('\t', 1) count += int(num) except ValueError: pass if current_word == word: continue elif current_word: print(f'{current_word}\t{count}') count = int(num) current_word = word if current_word == word: print(f'{current_word}\t{count}') ``` 该段落描述了一个典型Reducer的工作流程:遍历接收到的所有记录,累积同一关键词对应的数量直至遇到新的关键字为止;每当切换到新目标前都会把旧对象及其累计量写出。这样就能有效地完成了整个Word Count作业。 然而需要注意一点是在Python环境下尝试借助线程池来进行并行化改造可能并不会带来性能上的显著提升甚至适得其反,这是因为CPython解释器内部存在全局解释锁(GIL),限制了真正意义上的多核并发执行能力[^1]。因此如果追求更高的效率应该考虑采用多进程模型或者其他支持真并行的语言平台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java白菜治

祝愿赞赏大佬薪资翻倍

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值