Prompt Engineering
大语言模型(LLM)的微调(Fine-tune)代价较高,基于自然语言的提示(Prompt)方法已经成为了使用大语言模型解决下游任务的主要途径。而且提示的质量在很大程度上会影响大语言模型在特定任务中的表现。当前的很多工作和应用集中在如何快速应用LLM,使其适配下游任务,所采用的方法统称为Prompt Engineering,其中包括了上下文学习(In-Context Learning,ICL)和思维链提示(Chain-of-Thought,CoT),部分内容来自GPT Prompt Engineering官网和LLM Books
上下文学习和思维链相关文章参考链接:
- 上下文学习,ICL:https://blog.csdn.net/qq_41897558/article/details/141676968?spm=1001.2014.3001.5501
- 思维链,CoT:https://blog.csdn.net/qq_41897558/article/details/141676968?spm=1001.2014.3001.5501
Prompt Engineering(提示工程) 是啥?
Prompt是什么?
在大语言模型(如GPT-4)的应用中,Prompt 是指用户输入给模型的一段文字或问题,用于引导模型生成相应的回答或内容。简单来说,Prompt 就是你给模型的指令或提示。
例如,如果你想让模型生成一段关于人工智能的介绍,你可以输入一个 Prompt 如:“请介绍一下人工智能的基本概念。” 模型会根据这个提示生成相应的内容。
Prompt 的设计和编写在大语言模型的应用中非常重要,因为一个好的 Prompt 可以帮助模型更准确地理解用户的需求,从而生成更符合预期的回答。
Why Prompt Engineering?
Prompt engineering 是指设计和优化输入提示(Prompt)以便大语言模型(如GPT-4)能够生成更准确和有用的输出。这一过程涉及到理解模型的工作原理、用户需求以及**如何通过不同的提示结构来引导模型生成所需的内容。**通过提示工程,可以:
- 提高准确性:通过精心设计的Prompt,可以帮助模型更好地理解用户的意图,从而生成更准确的回答。
- 优化输出质量:不同的Prompt结构可能会导致模型生成不同质量的输出。通过Prompt engineering,可以找到最优的提示结构,提升输出的质量。
- 节省时间和资源:一个好的Prompt可以减少模型生成不相关或错误内容的概率,从而节省用户的时间和计算资源。
- 增强模型的适应性:Pr