神经网络3-卷积神经网络一文深度理解

卷积神经网络(Convolutional Neural Network, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),主要用于图像识别、语音识别和自然语言处理等任务,是深度学习(deep learning)的代表算法之一。

卷积神经网络(Convolutional Neural Networks,CNN)是一种专门用来处理具有类似网格结构的数据的神经网络。例如时间序列数据(可以认为是在时间轴上有规律地采样形成的一维网格)图像数据(可以看作是二维的像素网格)。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。因此,卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification)

卷积神经网络结构一般由输入层(Input)、卷积层(Convolution)、池化层(Pooling)、全连接层(Fully Connected)组成。

1. 传统神经网络与卷积神经网络的区别

首先我们探讨一下传统神经网络与卷积神经网络的区别。上图是传统神经网络和卷积神经网络的简单结构示意图,关于传统神经网络的基本内容,可以详见我之前的文章:神经网络1-基础过关。我们从上图可以直观的发现卷积神经网络和传统神经网络相比,有如下区别:

  1. 输入数据的维度:传统神经网络的输入通常是一个向量,即一维数据。而卷积神经网络的输入则是一个三维的长方体矩阵,例如H×W×3,其中H表示高度,W表示宽度,3则表示颜色通道(红色、绿色和蓝色)。这种不同的输入方式导致了神经网络的权重参数和输出结果也有很大的差异。
  2. 网络结构:传统神经网络的结构可能相对简单,通常不包含卷积和池化这样的特殊层。而卷积神经网络则包含四层结构:输入层、卷积层、池化层和全连接层。其中,卷积层负责对上一层的结果进行卷积运算,提取特征池化层则对上一层结构进行池化,压缩特征全连接层则起到了“分类器”的作用。
  3. 运算方式:传统神经网络的运算方式主要是叉积矩阵乘法运算(一维),而卷积神经网络则采用的是点积矩阵卷积运算(多维)

传统神经网络和卷积神经网络在输入数据的维度、网络结构以及运算方式等方面都存在明显的差异。这些差异使得卷积神经网络在处理图像等具有网格结构的数据时具有更高的效率和准确性。

2. 卷积神经网络的架构

卷积神经网络的架构通常由四层结构组成:输入层、卷积层、池化层和全连接层。其中,

  1. 输入层:这是卷积神经网络的第一层,负责接收原始图像数据。输入层的尺寸通常与原始图像的尺寸相同,颜色通道数可以是1(灰度图像)或3(彩色图像)。
  2. 卷积层:卷积层是卷积神经网络中的核心层,负责通过卷积运算提取图像的特征。卷积操作是通过卷积核(Filter)与输入信号进行卷积运算而完成的,每个卷积核可以提取一种特定的特征。在卷积层中,可以设置多组卷积核,每组卷积核可以提取不同的特征。卷积层的输出通常会通过激活函数进行激活,常用的激活函数有ReLU、Sigmoid、Tanh等。
  3. 池化层:池化层是卷积神经网络中的另一个重要层级,它的主要作用是对卷积层的输出进行下采样,从而减少参数数量,提高模型计算效率。池化层通常采用最大池化平均池化操作。最大池化是指从池化窗口中选择最大值作为输出,而平均池化是指从池化窗口中取平均值作为输出。池化层通常不改变通道数量,但可以减少特征图的尺寸。
  4. 全连接层:全连接层是卷积神经网络的最后一层,通常用来输出最终的分类结果。全连接层将所有的特征连接在一起,通过全连接层的权重计算来预测输出结果。在全连接层中,通常会使用Softmax或Sigmoid函数进行激活。

除了以上四种类型的层,卷积神经网络还可能包含其他类型的层,如激活层、BN(Batch Normalization,批归一化)层、损失层等。这些层的引入可以进一步提高模型的性能和稳定性。请注意,以上只是卷积神经网络的一种常见架构,实际上,根据不同的任务和数据集,卷积神经网络的架构可能会有所不同。例如,一些网络可能包含多个并行的卷积路径(如Inception系列网络),或者采用残差连接(如ResNet系列网络)等技巧来改善模型的性能。

3. 什么是卷积?

卷积(Convolution)是一种特殊的线性变换,它通过在输入数据上滑动卷积核(也称为滤波器)来进行计算。卷积核是一个小的二维矩阵,通常与输入数据的局部区域进行点乘运算,然后将结果汇总得到一个新的值。这个过程也被称为滤波(Filter)。卷积核在输入数据上进行滑动,每次计算与卷积核重叠部分的点乘和,从而得到一个新的特征

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值