时间序列预测 — Informer模型原理

Informer是一种针对长序列时间序列预测(LSTF)的Transformer模型,通过ProbSparse稀疏自注意力机制、自注意力蒸馏和生成式解码器解决了Transformer的计算复杂度、内存使用和速度问题。该模型在保持高性能的同时,显著降低了计算成本,适用于长期预测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

专栏内容

 所有文章提供源代码、数据集、效果可视化

 文章多次上领域内容榜、每日必看榜单、全站综合热榜

时间序列预测存在的问题

 现有的大量方法没有真正的预测未来值,只是用历史数据做验证

 利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎


目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值