【题解】UVA12230 数学期望

本文介绍了一种计算在给定条件下渡河问题期望时间的方法。通过将全程分为步行和渡河两部分,利用概率论计算出每条河的等待时间及过河时间的期望值,进而求得总时间的期望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
首先如果全部步行则期望为D,现在每遇到一条河,求过河时间的期望,等待时间的区间为(0,2*L/v),船在每个地方都是等可能的,所以等待的期望就是(0 + 2*L/v) / 2 = L / v,又过河还要L / v,所以总的渡河期望值为2 * L / v,所以每遇到一条河拿D减去假设步行过河的期望L再加上实际过河期望2 * L / v即可

#include<cstdio>
int main()
{
    //freopen("in.txt","r",stdin);
    int n;
    double d;
    int ca=1;
    while(scanf("%d %lf",&n,&d)!=EOF&&(n+d))
    {
        double p,l,v;
        for(int i=0;i<n;i++)
        {
            scanf("%lf %lf %lf",&p,&l,&v);
            d=d-l+2.0*l/v;
        }
        printf("Case %d: %.3f\n\n",ca++,d);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值