【题解】洛谷P2123皇后游戏 贪心

本文通过一个具体的编程题目,探讨了微扰证明在贪心算法中的应用,分享了一个错误的证明过程,并通过学习大佬的题解纠正了错误,总结了贪心算法常见的五种证明方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
根据国王游戏的经验,尝试着用微扰证明,结果证明过程有误,学习了大佬题解以后发现我的证明过程确实存在问题。

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define _rep(i,a,b) for(int i=(a);i<=(b);i++)
const int N=2e4+10;
typedef long long ll;
int t,n;
struct node{
    ll a,b,c;
    int d;
    bool operator <(const node&rhs)const{
    return d<rhs.d||(d==rhs.d&&d<=0&&a<rhs.a)||(d==rhs.d&&d>0&&b>rhs.b);}
}man[N];
ll sum[N];
int main()
{
    //freopen("in.txt","r",stdin);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        _rep(i,1,n)
        {
            scanf("%d%d",&man[i].a,&man[i].b);
            if(man[i].a-man[i].b<0)man[i].d=-1;
            else if(man[i].a==man[i].b)man[i].d=0;
            else man[i].d=1;
        }
        sort(man+1,man+n+1);
        man[1].c=man[1].a+man[1].b;sum[1]=man[1].a;
        _rep(i,2,n)man[i].c=max(man[i-1].c,sum[i-1]+man[i].a)+man[i].b,sum[i]=sum[i-1]+man[i].a;
        printf("%lld\n",man[n].c);
    }
    return 0;
}

要多学习贪心的常见证明方法:
1.微扰
2.范围缩放
3.决策包容性
4.反证法
5.数学归纳法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值